动态环境中通过顺序推理实现的自动称重

A. D. Martin, T. Molteno
{"title":"动态环境中通过顺序推理实现的自动称重","authors":"A. D. Martin, T. Molteno","doi":"10.1109/ICARA.2015.7081159","DOIUrl":null,"url":null,"abstract":"We demonstrate sequential mass inference of a suspended bag of milk powder from simulated measurements of the vertical force component at the pivot while the bag is being filled. We compare the predictions of various sequential inference methods both with and without a physics model to capture the system dynamics. We find that non-augmented and augmented-state unscented Kalman filters (UKFs) in conjunction with a physics model of a pendulum of varying mass and length provide rapid and accurate predictions of the milk powder mass as a function of time. The UKFs outperform the other method tested - a particle filter. Moreover, inference methods which incorporate a physics model outperform equivalent algorithms which do not.","PeriodicalId":176657,"journal":{"name":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automated weighing by sequential inference in dynamic environments\",\"authors\":\"A. D. Martin, T. Molteno\",\"doi\":\"10.1109/ICARA.2015.7081159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate sequential mass inference of a suspended bag of milk powder from simulated measurements of the vertical force component at the pivot while the bag is being filled. We compare the predictions of various sequential inference methods both with and without a physics model to capture the system dynamics. We find that non-augmented and augmented-state unscented Kalman filters (UKFs) in conjunction with a physics model of a pendulum of varying mass and length provide rapid and accurate predictions of the milk powder mass as a function of time. The UKFs outperform the other method tested - a particle filter. Moreover, inference methods which incorporate a physics model outperform equivalent algorithms which do not.\",\"PeriodicalId\":176657,\"journal\":{\"name\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA.2015.7081159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2015.7081159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们演示了一个悬浮袋奶粉的连续质量推断,从模拟测量的垂直力分量在支点,而袋是填充。我们比较了各种顺序推理方法的预测,无论是有和没有物理模型来捕捉系统动力学。我们发现,非增强和增强状态无气味卡尔曼滤波器(ukf)与变化质量和长度的摆的物理模型相结合,可以快速准确地预测奶粉质量作为时间的函数。ukf优于另一种测试方法——粒子过滤器。此外,包含物理模型的推理方法优于不包含物理模型的等效算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated weighing by sequential inference in dynamic environments
We demonstrate sequential mass inference of a suspended bag of milk powder from simulated measurements of the vertical force component at the pivot while the bag is being filled. We compare the predictions of various sequential inference methods both with and without a physics model to capture the system dynamics. We find that non-augmented and augmented-state unscented Kalman filters (UKFs) in conjunction with a physics model of a pendulum of varying mass and length provide rapid and accurate predictions of the milk powder mass as a function of time. The UKFs outperform the other method tested - a particle filter. Moreover, inference methods which incorporate a physics model outperform equivalent algorithms which do not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信