基于卷积神经网络的中国传统视觉文化符号识别

Xiao Tan, Xiaoyu Wu, Cheng Yang
{"title":"基于卷积神经网络的中国传统视觉文化符号识别","authors":"Xiao Tan, Xiaoyu Wu, Cheng Yang","doi":"10.1109/ICSESS.2016.7883221","DOIUrl":null,"url":null,"abstract":"Chinese Traditional Visual Cultural Symbols(CT-VCSs) is the important component of Chinese ancient civilization, and it is the crystallization of Chinese culture with a history of several thousand years. So it has great significance to research CT-VCSs. In this paper, we mainly research the recognition and classification of CT-VCSs based on Convolutional neural network(CNN). We mainly use Caffenet and Alexnet in the Caffe framework, and fine-tune the existed Caffe models. Meanwhile, we also use GPU to speed up the process of training. Experimental results indicate that using CNN poses remarkable enhancement on the recognition task of CT-VCSs, and the recognition result of using Alexnet is the best.","PeriodicalId":175933,"journal":{"name":"2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chinese Traditional Visual Cultural Symbols recognition based on Convolutional neural network\",\"authors\":\"Xiao Tan, Xiaoyu Wu, Cheng Yang\",\"doi\":\"10.1109/ICSESS.2016.7883221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chinese Traditional Visual Cultural Symbols(CT-VCSs) is the important component of Chinese ancient civilization, and it is the crystallization of Chinese culture with a history of several thousand years. So it has great significance to research CT-VCSs. In this paper, we mainly research the recognition and classification of CT-VCSs based on Convolutional neural network(CNN). We mainly use Caffenet and Alexnet in the Caffe framework, and fine-tune the existed Caffe models. Meanwhile, we also use GPU to speed up the process of training. Experimental results indicate that using CNN poses remarkable enhancement on the recognition task of CT-VCSs, and the recognition result of using Alexnet is the best.\",\"PeriodicalId\":175933,\"journal\":{\"name\":\"2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2016.7883221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2016.7883221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

中国传统视觉文化符号是中国古代文明的重要组成部分,是具有几千年历史的中华文化的结晶。因此,研究ct - vcs具有重要意义。本文主要研究了基于卷积神经网络(CNN)的ct - vcs识别与分类。我们主要在Caffe框架中使用Caffenet和Alexnet,并对现有的Caffe模型进行微调。同时,我们还使用GPU来加快训练过程。实验结果表明,使用CNN对ct - vcs的识别任务有显著增强,其中使用Alexnet的识别效果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chinese Traditional Visual Cultural Symbols recognition based on Convolutional neural network
Chinese Traditional Visual Cultural Symbols(CT-VCSs) is the important component of Chinese ancient civilization, and it is the crystallization of Chinese culture with a history of several thousand years. So it has great significance to research CT-VCSs. In this paper, we mainly research the recognition and classification of CT-VCSs based on Convolutional neural network(CNN). We mainly use Caffenet and Alexnet in the Caffe framework, and fine-tune the existed Caffe models. Meanwhile, we also use GPU to speed up the process of training. Experimental results indicate that using CNN poses remarkable enhancement on the recognition task of CT-VCSs, and the recognition result of using Alexnet is the best.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信