特发性帕金森病患者跨步过程分析的正向自回归模型

Yunfeng Wu, Xin Luo, Pinnan Chen, Lifang Liao, Shanshan Yang, R. Rangayyan
{"title":"特发性帕金森病患者跨步过程分析的正向自回归模型","authors":"Yunfeng Wu, Xin Luo, Pinnan Chen, Lifang Liao, Shanshan Yang, R. Rangayyan","doi":"10.1109/MeMeA.2015.7145226","DOIUrl":null,"url":null,"abstract":"In this paper, we derive forward autoregressive models to describe the stochastic process underlying stride interval series related to idiopathic Parkinson's disease. The parameters of the autoregressive model that specify pole locations in the complex z-plane were used as dominant features for the separation of gait series of healthy subjects and patients with Parkinson's disease. Based on the autoregressive parameters, linear discriminant analysis and support vector machines can provide classification accurate rates over 74% and area larger than 0.8 under the receiver operating characteristic curve. The results obtained show that the autoregressive model parameters could be useful for classification of stride series.","PeriodicalId":277757,"journal":{"name":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Forward autoregressive modeling for stride process analysis in patients with idiopathic Parkinson's disease\",\"authors\":\"Yunfeng Wu, Xin Luo, Pinnan Chen, Lifang Liao, Shanshan Yang, R. Rangayyan\",\"doi\":\"10.1109/MeMeA.2015.7145226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive forward autoregressive models to describe the stochastic process underlying stride interval series related to idiopathic Parkinson's disease. The parameters of the autoregressive model that specify pole locations in the complex z-plane were used as dominant features for the separation of gait series of healthy subjects and patients with Parkinson's disease. Based on the autoregressive parameters, linear discriminant analysis and support vector machines can provide classification accurate rates over 74% and area larger than 0.8 under the receiver operating characteristic curve. The results obtained show that the autoregressive model parameters could be useful for classification of stride series.\",\"PeriodicalId\":277757,\"journal\":{\"name\":\"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA.2015.7145226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA.2015.7145226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们推导了前向自回归模型来描述与特发性帕金森病相关的步幅间隔序列的随机过程。采用复z平面极点位置的自回归模型参数作为主导特征,对健康受试者和帕金森病患者的步态序列进行分离。基于自回归参数,线性判别分析和支持向量机在接收者工作特征曲线下的分类准确率大于74%,面积大于0.8。结果表明,自回归模型参数可用于跨步序列的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forward autoregressive modeling for stride process analysis in patients with idiopathic Parkinson's disease
In this paper, we derive forward autoregressive models to describe the stochastic process underlying stride interval series related to idiopathic Parkinson's disease. The parameters of the autoregressive model that specify pole locations in the complex z-plane were used as dominant features for the separation of gait series of healthy subjects and patients with Parkinson's disease. Based on the autoregressive parameters, linear discriminant analysis and support vector machines can provide classification accurate rates over 74% and area larger than 0.8 under the receiver operating characteristic curve. The results obtained show that the autoregressive model parameters could be useful for classification of stride series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信