TestNMT:功能到测试的神经机器翻译

Robert White, J. Krinke
{"title":"TestNMT:功能到测试的神经机器翻译","authors":"Robert White, J. Krinke","doi":"10.1145/3283812.3283823","DOIUrl":null,"url":null,"abstract":"Test generation can have a large impact on the software engineering process by decreasing the amount of time and effort required to maintain a high level of test coverage. This increases the quality of the resultant software while decreasing the associated effort. In this paper, we present TestNMT, an experimental approach to test generation using neural machine translation. TestNMT aims to learn to translate from functions to tests, allowing a developer to generate an approximate test for a given function, which can then be adapted to produce the final desired test. We also present a preliminary quantitative and qualitative evaluation of TestNMT in both cross-project and within-project scenarios. This evaluation shows that TestNMT is potentially useful in the within-project scenario, where it achieves a maximum BLEU score of 21.2, a maximum ROUGE-L score of 38.67, and is shown to be capable of generating approximate tests that are easy to adapt to working tests.","PeriodicalId":231305,"journal":{"name":"Proceedings of the 4th ACM SIGSOFT International Workshop on NLP for Software Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"TestNMT: function-to-test neural machine translation\",\"authors\":\"Robert White, J. Krinke\",\"doi\":\"10.1145/3283812.3283823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Test generation can have a large impact on the software engineering process by decreasing the amount of time and effort required to maintain a high level of test coverage. This increases the quality of the resultant software while decreasing the associated effort. In this paper, we present TestNMT, an experimental approach to test generation using neural machine translation. TestNMT aims to learn to translate from functions to tests, allowing a developer to generate an approximate test for a given function, which can then be adapted to produce the final desired test. We also present a preliminary quantitative and qualitative evaluation of TestNMT in both cross-project and within-project scenarios. This evaluation shows that TestNMT is potentially useful in the within-project scenario, where it achieves a maximum BLEU score of 21.2, a maximum ROUGE-L score of 38.67, and is shown to be capable of generating approximate tests that are easy to adapt to working tests.\",\"PeriodicalId\":231305,\"journal\":{\"name\":\"Proceedings of the 4th ACM SIGSOFT International Workshop on NLP for Software Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th ACM SIGSOFT International Workshop on NLP for Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3283812.3283823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th ACM SIGSOFT International Workshop on NLP for Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3283812.3283823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

通过减少维护高水平测试覆盖率所需的时间和精力,测试生成可以对软件工程过程产生很大的影响。这增加了最终软件的质量,同时减少了相关的工作。在本文中,我们提出了TestNMT,一种使用神经机器翻译生成测试的实验方法。TestNMT旨在学习将函数转换为测试,允许开发人员为给定函数生成近似测试,然后可以对其进行调整以生成最终所需的测试。我们还在跨项目和项目内的场景中对TestNMT进行了初步的定量和定性评估。该评估表明,TestNMT在项目内场景中具有潜在的用途,其中它的BLEU得分最高为21.2,ROUGE-L得分最高为38.67,并且显示能够生成易于适应工作测试的近似测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TestNMT: function-to-test neural machine translation
Test generation can have a large impact on the software engineering process by decreasing the amount of time and effort required to maintain a high level of test coverage. This increases the quality of the resultant software while decreasing the associated effort. In this paper, we present TestNMT, an experimental approach to test generation using neural machine translation. TestNMT aims to learn to translate from functions to tests, allowing a developer to generate an approximate test for a given function, which can then be adapted to produce the final desired test. We also present a preliminary quantitative and qualitative evaluation of TestNMT in both cross-project and within-project scenarios. This evaluation shows that TestNMT is potentially useful in the within-project scenario, where it achieves a maximum BLEU score of 21.2, a maximum ROUGE-L score of 38.67, and is shown to be capable of generating approximate tests that are easy to adapt to working tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信