F. Sandrini, F. Giandomenico, A. Bondavalli, E. Nett
{"title":"调度解决方案,支持可靠的实时应用程序","authors":"F. Sandrini, F. Giandomenico, A. Bondavalli, E. Nett","doi":"10.1109/ISORC.2000.839519","DOIUrl":null,"url":null,"abstract":"This paper deals with tolerance to timing faults in time-constrained systems. TAFT (Time Aware Fault-Tolerant) is a recently devised approach which applies tolerance to timing violations. According to TAFT, a task is structured in a pair, to guarantee that deadlines are met (although possibly offering a degraded service) without requiring the knowledge of task attributes difficult to estimate in practice. Wide margin of actions is left by the TAFT approach in scheduling the task pairs, leading to disparate performances; up to now, poor attention has been devoted to analyse this aspect. The goal of this work is to investigate on the most appropriate scheduling policies to adopt in a system structured in the TAFT fashion, in accordance with system conditions and application requirements. To this end, all experimental evaluation will be conducted based on a variety of scheduling policies, to derive useful indications for the system designer about the most rewarding policies to apply.","PeriodicalId":127761,"journal":{"name":"Proceedings Third IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2000) (Cat. No. PR00607)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Scheduling solutions for supporting dependable real-time applications\",\"authors\":\"F. Sandrini, F. Giandomenico, A. Bondavalli, E. Nett\",\"doi\":\"10.1109/ISORC.2000.839519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with tolerance to timing faults in time-constrained systems. TAFT (Time Aware Fault-Tolerant) is a recently devised approach which applies tolerance to timing violations. According to TAFT, a task is structured in a pair, to guarantee that deadlines are met (although possibly offering a degraded service) without requiring the knowledge of task attributes difficult to estimate in practice. Wide margin of actions is left by the TAFT approach in scheduling the task pairs, leading to disparate performances; up to now, poor attention has been devoted to analyse this aspect. The goal of this work is to investigate on the most appropriate scheduling policies to adopt in a system structured in the TAFT fashion, in accordance with system conditions and application requirements. To this end, all experimental evaluation will be conducted based on a variety of scheduling policies, to derive useful indications for the system designer about the most rewarding policies to apply.\",\"PeriodicalId\":127761,\"journal\":{\"name\":\"Proceedings Third IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2000) (Cat. No. PR00607)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Third IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2000) (Cat. No. PR00607)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISORC.2000.839519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Third IEEE International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2000) (Cat. No. PR00607)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2000.839519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scheduling solutions for supporting dependable real-time applications
This paper deals with tolerance to timing faults in time-constrained systems. TAFT (Time Aware Fault-Tolerant) is a recently devised approach which applies tolerance to timing violations. According to TAFT, a task is structured in a pair, to guarantee that deadlines are met (although possibly offering a degraded service) without requiring the knowledge of task attributes difficult to estimate in practice. Wide margin of actions is left by the TAFT approach in scheduling the task pairs, leading to disparate performances; up to now, poor attention has been devoted to analyse this aspect. The goal of this work is to investigate on the most appropriate scheduling policies to adopt in a system structured in the TAFT fashion, in accordance with system conditions and application requirements. To this end, all experimental evaluation will be conducted based on a variety of scheduling policies, to derive useful indications for the system designer about the most rewarding policies to apply.