消除歧义的档案更正

M. Eldhose, C. Rekha
{"title":"消除歧义的档案更正","authors":"M. Eldhose, C. Rekha","doi":"10.1109/ICE-CCN.2013.6528609","DOIUrl":null,"url":null,"abstract":"This paper presents entry for aura response for character recognition and the handwritten or printed text translation into editable text. The objective is to identify handwritten characters with the help of neural networks and facilitates the conversion of handwritten documents to editable text from document images. Handwritten contentedness boasts challenges that are seldom encountered in machine-printed text. The translation basis is either mechanical or electronic translation. This is not easy since different people have different handwriting styles. Assigning distinct templates to each and every alphabet and numbers is the approach described. This concept can be a trademark in data entry applications. The suggested method is simple, have promising discrimination accuracy and less time complexity.","PeriodicalId":286830,"journal":{"name":"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Disambiguated archieve rectification\",\"authors\":\"M. Eldhose, C. Rekha\",\"doi\":\"10.1109/ICE-CCN.2013.6528609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents entry for aura response for character recognition and the handwritten or printed text translation into editable text. The objective is to identify handwritten characters with the help of neural networks and facilitates the conversion of handwritten documents to editable text from document images. Handwritten contentedness boasts challenges that are seldom encountered in machine-printed text. The translation basis is either mechanical or electronic translation. This is not easy since different people have different handwriting styles. Assigning distinct templates to each and every alphabet and numbers is the approach described. This concept can be a trademark in data entry applications. The suggested method is simple, have promising discrimination accuracy and less time complexity.\",\"PeriodicalId\":286830,\"journal\":{\"name\":\"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICE-CCN.2013.6528609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICE-CCN.2013.6528609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了用于字符识别和将手写或印刷文本翻译成可编辑文本的光环响应条目。目标是在神经网络的帮助下识别手写字符,并促进将手写文档从文档图像转换为可编辑的文本。手写的内容具有在机器打印文本中很少遇到的挑战。翻译依据是机械翻译或电子翻译。这并不容易,因为不同的人有不同的书写风格。为每个字母和数字分配不同的模板是所描述的方法。这个概念可以成为数据输入应用程序中的商标。该方法简单、识别精度高、时间复杂度小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disambiguated archieve rectification
This paper presents entry for aura response for character recognition and the handwritten or printed text translation into editable text. The objective is to identify handwritten characters with the help of neural networks and facilitates the conversion of handwritten documents to editable text from document images. Handwritten contentedness boasts challenges that are seldom encountered in machine-printed text. The translation basis is either mechanical or electronic translation. This is not easy since different people have different handwriting styles. Assigning distinct templates to each and every alphabet and numbers is the approach described. This concept can be a trademark in data entry applications. The suggested method is simple, have promising discrimination accuracy and less time complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信