RL-BLH:基于学习的智能电表成本节约和隐私保护电池控制

Jinkyu Koo, Xiaojun Lin, S. Bagchi
{"title":"RL-BLH:基于学习的智能电表成本节约和隐私保护电池控制","authors":"Jinkyu Koo, Xiaojun Lin, S. Bagchi","doi":"10.1109/DSN.2017.16","DOIUrl":null,"url":null,"abstract":"An emerging solution to privacy issues in smart grids is battery-based load hiding (BLH) that uses a rechargeable battery to decouple the meter readings from user activities. However, existing BLH algorithms have two significant limitations: (1) Most of them focus on flattening high-frequency variation of usage profile only, thereby still revealing a low-frequency shape, (2) Otherwise, they assume to know a statistical model of usage pattern. To overcome these limitations, we propose a new BLH algorithm, named RL-BLH. The RL-BLH hides both low-frequency and high-frequency usage patterns by shaping the meter readings to rectangular pulses. The RL-BLH learns a decision policy for choosing pulse magnitudes on the fly without prior knowledge of usage pattern. The decision policy is designed to charge and discharge the battery in the optimal way to maximize cost savings. We also provide heuristics to shorten learning time and improve cost savings.","PeriodicalId":426928,"journal":{"name":"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"RL-BLH: Learning-Based Battery Control for Cost Savings and Privacy Preservation for Smart Meters\",\"authors\":\"Jinkyu Koo, Xiaojun Lin, S. Bagchi\",\"doi\":\"10.1109/DSN.2017.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An emerging solution to privacy issues in smart grids is battery-based load hiding (BLH) that uses a rechargeable battery to decouple the meter readings from user activities. However, existing BLH algorithms have two significant limitations: (1) Most of them focus on flattening high-frequency variation of usage profile only, thereby still revealing a low-frequency shape, (2) Otherwise, they assume to know a statistical model of usage pattern. To overcome these limitations, we propose a new BLH algorithm, named RL-BLH. The RL-BLH hides both low-frequency and high-frequency usage patterns by shaping the meter readings to rectangular pulses. The RL-BLH learns a decision policy for choosing pulse magnitudes on the fly without prior knowledge of usage pattern. The decision policy is designed to charge and discharge the battery in the optimal way to maximize cost savings. We also provide heuristics to shorten learning time and improve cost savings.\",\"PeriodicalId\":426928,\"journal\":{\"name\":\"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN.2017.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2017.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

针对智能电网的隐私问题,一种新兴的解决方案是基于电池的负载隐藏(BLH),它使用可充电电池将电表读数与用户活动分离。然而,现有的BLH算法存在两个明显的局限性:(1)大多数算法只关注使用曲线的高频变化,从而仍然显示低频形状;(2)否则,它们假设知道使用模式的统计模型。为了克服这些限制,我们提出了一种新的BLH算法,命名为RL-BLH。RL-BLH通过将仪表读数塑造成矩形脉冲来隐藏低频和高频使用模式。RL-BLH在不事先了解使用模式的情况下学习动态选择脉冲幅度的决策策略。该决策策略旨在以最优方式对电池进行充放电,以最大限度地节省成本。我们还提供启发式方法来缩短学习时间和提高成本节约。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RL-BLH: Learning-Based Battery Control for Cost Savings and Privacy Preservation for Smart Meters
An emerging solution to privacy issues in smart grids is battery-based load hiding (BLH) that uses a rechargeable battery to decouple the meter readings from user activities. However, existing BLH algorithms have two significant limitations: (1) Most of them focus on flattening high-frequency variation of usage profile only, thereby still revealing a low-frequency shape, (2) Otherwise, they assume to know a statistical model of usage pattern. To overcome these limitations, we propose a new BLH algorithm, named RL-BLH. The RL-BLH hides both low-frequency and high-frequency usage patterns by shaping the meter readings to rectangular pulses. The RL-BLH learns a decision policy for choosing pulse magnitudes on the fly without prior knowledge of usage pattern. The decision policy is designed to charge and discharge the battery in the optimal way to maximize cost savings. We also provide heuristics to shorten learning time and improve cost savings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信