高压光子晶体光纤传感器的数值与实验研究

J. Hayashi, C. Cordeiro, Marcos A. R. Franco, F. Sircilli
{"title":"高压光子晶体光纤传感器的数值与实验研究","authors":"J. Hayashi, C. Cordeiro, Marcos A. R. Franco, F. Sircilli","doi":"10.1063/1.3002521","DOIUrl":null,"url":null,"abstract":"We report a study of using photonic crystal fibers (PCFs) for high pressure applications. An opto-mechanical analysis was realized in regular PCFs and suspended-core microstructured optical fibers for different fiber geometrical parameters. It was found that the pressure sensitivity is highly dependent on the fiber structure. It was also experimentally shown that even small core PCFs with high air filling fraction can deal with pressures as high as 500 bar (7350 psi) without any noticeable problem.","PeriodicalId":301956,"journal":{"name":"1st Workshop on Specialty Optical Fibers and Their Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Numerical and Experimental Studies for a High Pressure Photonic Crystal Fiber Based Sensor\",\"authors\":\"J. Hayashi, C. Cordeiro, Marcos A. R. Franco, F. Sircilli\",\"doi\":\"10.1063/1.3002521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a study of using photonic crystal fibers (PCFs) for high pressure applications. An opto-mechanical analysis was realized in regular PCFs and suspended-core microstructured optical fibers for different fiber geometrical parameters. It was found that the pressure sensitivity is highly dependent on the fiber structure. It was also experimentally shown that even small core PCFs with high air filling fraction can deal with pressures as high as 500 bar (7350 psi) without any noticeable problem.\",\"PeriodicalId\":301956,\"journal\":{\"name\":\"1st Workshop on Specialty Optical Fibers and Their Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1st Workshop on Specialty Optical Fibers and Their Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.3002521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st Workshop on Specialty Optical Fibers and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.3002521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们报道了一项使用光子晶体光纤(PCFs)用于高压应用的研究。对不同光纤几何参数下的普通聚光光纤和悬芯微结构光纤进行了光力学分析。结果表明,压力敏感性与纤维结构密切相关。实验还表明,即使是具有高空气填充分数的小芯pcf也可以处理高达500 bar (7350 psi)的压力而不会出现任何明显问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical and Experimental Studies for a High Pressure Photonic Crystal Fiber Based Sensor
We report a study of using photonic crystal fibers (PCFs) for high pressure applications. An opto-mechanical analysis was realized in regular PCFs and suspended-core microstructured optical fibers for different fiber geometrical parameters. It was found that the pressure sensitivity is highly dependent on the fiber structure. It was also experimentally shown that even small core PCFs with high air filling fraction can deal with pressures as high as 500 bar (7350 psi) without any noticeable problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信