基于FCA的多关系数据定量关联规则挖掘

M. Nagao, H. Seki
{"title":"基于FCA的多关系数据定量关联规则挖掘","authors":"M. Nagao, H. Seki","doi":"10.1109/IWCIA.2016.7805753","DOIUrl":null,"url":null,"abstract":"We consider the problem of mining quantitative association rules (ARs) from a multi-relational database (MRDB), where a database contains multiple tables (relations), and attributes in a table are either categorical or numerical (or quantitative). To handle numerical data in a precise and efficient way, we consider (logical) conjunctions with interval constraints, using the notion of closed interval patterns (CIPs) proposed by Kaytoue et al. in FCA (Formal Concept Analysis). We then propose an algorithm for mining quantitative ARs which satisfy both a minimum support and a minimum confidence. We also propose a pruning method tailored to computing CIPs and show its correctness. We give some experimental results, which show the effectiveness of the proposed method, compared with the conventional methods such as a discretization-based approach or an optimization-based approach.","PeriodicalId":262942,"journal":{"name":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On mining quantitative association rules from multi-relational data with FCA\",\"authors\":\"M. Nagao, H. Seki\",\"doi\":\"10.1109/IWCIA.2016.7805753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of mining quantitative association rules (ARs) from a multi-relational database (MRDB), where a database contains multiple tables (relations), and attributes in a table are either categorical or numerical (or quantitative). To handle numerical data in a precise and efficient way, we consider (logical) conjunctions with interval constraints, using the notion of closed interval patterns (CIPs) proposed by Kaytoue et al. in FCA (Formal Concept Analysis). We then propose an algorithm for mining quantitative ARs which satisfy both a minimum support and a minimum confidence. We also propose a pruning method tailored to computing CIPs and show its correctness. We give some experimental results, which show the effectiveness of the proposed method, compared with the conventional methods such as a discretization-based approach or an optimization-based approach.\",\"PeriodicalId\":262942,\"journal\":{\"name\":\"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCIA.2016.7805753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 9th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2016.7805753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们考虑从多关系数据库(MRDB)中挖掘定量关联规则(ARs)的问题,其中数据库包含多个表(关系),并且表中的属性要么是分类的,要么是数字的(或定量的)。为了以精确和有效的方式处理数值数据,我们使用Kaytoue等人在FCA(正式概念分析)中提出的封闭区间模式(cip)的概念,考虑与区间约束的(逻辑)连接。然后,我们提出了一种同时满足最小支持度和最小置信度的定量ar挖掘算法。我们还提出了一种适合计算cip的剪枝方法,并证明了其正确性。实验结果表明,该方法与传统的基于离散化的方法或基于优化的方法相比是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On mining quantitative association rules from multi-relational data with FCA
We consider the problem of mining quantitative association rules (ARs) from a multi-relational database (MRDB), where a database contains multiple tables (relations), and attributes in a table are either categorical or numerical (or quantitative). To handle numerical data in a precise and efficient way, we consider (logical) conjunctions with interval constraints, using the notion of closed interval patterns (CIPs) proposed by Kaytoue et al. in FCA (Formal Concept Analysis). We then propose an algorithm for mining quantitative ARs which satisfy both a minimum support and a minimum confidence. We also propose a pruning method tailored to computing CIPs and show its correctness. We give some experimental results, which show the effectiveness of the proposed method, compared with the conventional methods such as a discretization-based approach or an optimization-based approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信