噪声前馈生物神经网络中发射速率的传播

M. Uzuntarla, M. Ozer, E. Koklukaya
{"title":"噪声前馈生物神经网络中发射速率的传播","authors":"M. Uzuntarla, M. Ozer, E. Koklukaya","doi":"10.1109/SIU.2010.5654422","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the input firing rate propagation in a feedforward biological neural network composed of multiple layers. Dynamical behaviour of neurons in the network are modeled by using stochastic Hodgkin-Huxley equations which considers the probabilistic nature of ion channels embedded in neuronal membranes. Thus, firing rate propagation is studied in a biophysically more realistic manner by including ion channel noise which is ignored in previous studies. Input rate information in the network is provided by varying the cell size in the first layer. We show that the efficent transmission of input firing rate through the network can be achieved via the synchronization mechanism within the neurons in layers. We also show that this synchronization araise from the synaptic current variance increase and provided by adjusting the cell size or the intrinsic channel noise strength in layers to an optimal value.","PeriodicalId":152297,"journal":{"name":"2010 IEEE 18th Signal Processing and Communications Applications Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Propagation of firing rate in a noisy feedforward biological neural network\",\"authors\":\"M. Uzuntarla, M. Ozer, E. Koklukaya\",\"doi\":\"10.1109/SIU.2010.5654422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigate the input firing rate propagation in a feedforward biological neural network composed of multiple layers. Dynamical behaviour of neurons in the network are modeled by using stochastic Hodgkin-Huxley equations which considers the probabilistic nature of ion channels embedded in neuronal membranes. Thus, firing rate propagation is studied in a biophysically more realistic manner by including ion channel noise which is ignored in previous studies. Input rate information in the network is provided by varying the cell size in the first layer. We show that the efficent transmission of input firing rate through the network can be achieved via the synchronization mechanism within the neurons in layers. We also show that this synchronization araise from the synaptic current variance increase and provided by adjusting the cell size or the intrinsic channel noise strength in layers to an optimal value.\",\"PeriodicalId\":152297,\"journal\":{\"name\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 18th Signal Processing and Communications Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2010.5654422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 18th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2010.5654422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本研究中,我们研究了多层前馈生物神经网络中输入发射率的传播。利用随机霍奇金-赫胥黎方程对网络中神经元的动态行为进行了建模,该方程考虑了嵌入在神经元膜中的离子通道的概率性质。因此,通过将以往研究中忽略的离子通道噪声包括在内,以生物物理上更真实的方式研究发射速率传播。网络中的输入速率信息是通过改变第一层的单元大小来提供的。研究表明,通过层内神经元的同步机制,可以实现输入放电率在网络中的有效传输。我们还表明,这种同步是由突触电流方差增加引起的,并通过调整细胞大小或层内固有信道噪声强度来提供最佳值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Propagation of firing rate in a noisy feedforward biological neural network
In this study, we investigate the input firing rate propagation in a feedforward biological neural network composed of multiple layers. Dynamical behaviour of neurons in the network are modeled by using stochastic Hodgkin-Huxley equations which considers the probabilistic nature of ion channels embedded in neuronal membranes. Thus, firing rate propagation is studied in a biophysically more realistic manner by including ion channel noise which is ignored in previous studies. Input rate information in the network is provided by varying the cell size in the first layer. We show that the efficent transmission of input firing rate through the network can be achieved via the synchronization mechanism within the neurons in layers. We also show that this synchronization araise from the synaptic current variance increase and provided by adjusting the cell size or the intrinsic channel noise strength in layers to an optimal value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信