在Intel®Xeon Phi™协处理器上对fMRI数据进行全相关矩阵分析

Yida Wang, Michael J. Anderson, J. Cohen, A. Heinecke, K. Li, N. Satish, N. Sundaram, N. Turk-Browne, Theodore L. Willke
{"title":"在Intel®Xeon Phi™协处理器上对fMRI数据进行全相关矩阵分析","authors":"Yida Wang, Michael J. Anderson, J. Cohen, A. Heinecke, K. Li, N. Satish, N. Sundaram, N. Turk-Browne, Theodore L. Willke","doi":"10.1145/2807591.2807631","DOIUrl":null,"url":null,"abstract":"Full correlation matrix analysis (FCMA) is an unbiased approach for exhaustively studying interactions among brain regions in functional magnetic resonance imaging (fMRI) data from human participants. In order to answer neuroscientific questions efficiently, we are developing a closed-loop analysis system with FCMA on a cluster of nodes with Intel® Xeon Phi™ coprocessors. Here we propose several ideas for data-driven algorithmic modification to improve the performance on the coprocessor. Our experiments with real datasets show that the optimized single-node code runs 5x-16x faster than the baseline implementation using the well-known Intel® MKL and LibSVM libraries, and that the cluster implementation achieves near linear speedup on 5760 cores.","PeriodicalId":117494,"journal":{"name":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Full correlation matrix analysis of fMRI data on Intel® Xeon Phi™ coprocessors\",\"authors\":\"Yida Wang, Michael J. Anderson, J. Cohen, A. Heinecke, K. Li, N. Satish, N. Sundaram, N. Turk-Browne, Theodore L. Willke\",\"doi\":\"10.1145/2807591.2807631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Full correlation matrix analysis (FCMA) is an unbiased approach for exhaustively studying interactions among brain regions in functional magnetic resonance imaging (fMRI) data from human participants. In order to answer neuroscientific questions efficiently, we are developing a closed-loop analysis system with FCMA on a cluster of nodes with Intel® Xeon Phi™ coprocessors. Here we propose several ideas for data-driven algorithmic modification to improve the performance on the coprocessor. Our experiments with real datasets show that the optimized single-node code runs 5x-16x faster than the baseline implementation using the well-known Intel® MKL and LibSVM libraries, and that the cluster implementation achieves near linear speedup on 5760 cores.\",\"PeriodicalId\":117494,\"journal\":{\"name\":\"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2807591.2807631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807591.2807631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

全相关矩阵分析(FCMA)是一种无偏的方法,用于从人类参与者的功能磁共振成像(fMRI)数据中详尽地研究大脑区域之间的相互作用。为了有效地回答神经科学问题,我们正在基于Intel®Xeon Phi™协处理器的节点集群开发一种基于FCMA的闭环分析系统。在这里,我们提出了一些数据驱动算法修改的想法,以提高协处理器上的性能。我们在真实数据集上的实验表明,优化后的单节点代码比使用著名的Intel®MKL和LibSVM库的基线实现快5 -16倍,并且集群实现在5760核上实现了接近线性的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Full correlation matrix analysis of fMRI data on Intel® Xeon Phi™ coprocessors
Full correlation matrix analysis (FCMA) is an unbiased approach for exhaustively studying interactions among brain regions in functional magnetic resonance imaging (fMRI) data from human participants. In order to answer neuroscientific questions efficiently, we are developing a closed-loop analysis system with FCMA on a cluster of nodes with Intel® Xeon Phi™ coprocessors. Here we propose several ideas for data-driven algorithmic modification to improve the performance on the coprocessor. Our experiments with real datasets show that the optimized single-node code runs 5x-16x faster than the baseline implementation using the well-known Intel® MKL and LibSVM libraries, and that the cluster implementation achieves near linear speedup on 5760 cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信