Suvam Patra, B. Bhowmick, Subhashis Banerjee, P. Kalra
{"title":"使用Graph Cut从Kinect和高清摄像机生成高分辨率点云","authors":"Suvam Patra, B. Bhowmick, Subhashis Banerjee, P. Kalra","doi":"10.5220/0003863003110316","DOIUrl":null,"url":null,"abstract":"This paper describes a methodology for obtaining a high resolution dense point cloud using Kinect (J. Smisek and Pajdla, 2011) and HD cameras. Kinect produces a VGA resolution photograph and a noisy point cloud. But high resolution images of the same scene can easily be obtained using additional HD cameras. We combine the information to generate a high resolution dense point cloud. First, we do a joint calibration of Kinect and the HD cameras using traditional epipolar geometry (R. Hartley, 2004). Then we use the sparse point cloud obtained from Kinect and the high resolution information from the HD cameras to produce a dense point cloud in a registered frame using graph cut optimization. Experimental results show that this approach can significantly enhance the resolution of the Kinect point cloud.","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"High Resolution Point Cloud Generation from Kinect and HD Cameras using Graph Cut\",\"authors\":\"Suvam Patra, B. Bhowmick, Subhashis Banerjee, P. Kalra\",\"doi\":\"10.5220/0003863003110316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a methodology for obtaining a high resolution dense point cloud using Kinect (J. Smisek and Pajdla, 2011) and HD cameras. Kinect produces a VGA resolution photograph and a noisy point cloud. But high resolution images of the same scene can easily be obtained using additional HD cameras. We combine the information to generate a high resolution dense point cloud. First, we do a joint calibration of Kinect and the HD cameras using traditional epipolar geometry (R. Hartley, 2004). Then we use the sparse point cloud obtained from Kinect and the high resolution information from the HD cameras to produce a dense point cloud in a registered frame using graph cut optimization. Experimental results show that this approach can significantly enhance the resolution of the Kinect point cloud.\",\"PeriodicalId\":411140,\"journal\":{\"name\":\"International Conference on Computer Vision Theory and Applications\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Vision Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0003863003110316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0003863003110316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
摘要
本文描述了一种使用Kinect (J. Smisek and Pajdla, 2011)和高清摄像机获得高分辨率密集点云的方法。Kinect产生一张VGA分辨率的照片和一个嘈杂的点云。但是,使用额外的高清摄像机可以很容易地获得相同场景的高分辨率图像。我们将这些信息结合起来生成一个高分辨率的密集点云。首先,我们使用传统的极几何图形对Kinect和高清摄像机进行联合校准(R. Hartley, 2004)。然后利用Kinect获取的稀疏点云和高清摄像机获取的高分辨率信息,利用图割优化在配准帧内生成密集点云。实验结果表明,该方法可以显著提高Kinect点云的分辨率。
High Resolution Point Cloud Generation from Kinect and HD Cameras using Graph Cut
This paper describes a methodology for obtaining a high resolution dense point cloud using Kinect (J. Smisek and Pajdla, 2011) and HD cameras. Kinect produces a VGA resolution photograph and a noisy point cloud. But high resolution images of the same scene can easily be obtained using additional HD cameras. We combine the information to generate a high resolution dense point cloud. First, we do a joint calibration of Kinect and the HD cameras using traditional epipolar geometry (R. Hartley, 2004). Then we use the sparse point cloud obtained from Kinect and the high resolution information from the HD cameras to produce a dense point cloud in a registered frame using graph cut optimization. Experimental results show that this approach can significantly enhance the resolution of the Kinect point cloud.