通过研究循环结构中的复制机制来改进字素到音素的转换

Abhishek Niranjan, M. Shaik
{"title":"通过研究循环结构中的复制机制来改进字素到音素的转换","authors":"Abhishek Niranjan, M. Shaik","doi":"10.1109/ASRU46091.2019.9003729","DOIUrl":null,"url":null,"abstract":"Attention driven encoder-decoder architectures have become highly successful in various sequence-to-sequence learning tasks. We propose copy-augmented Bi-directional Long Short-Term Memory based Encoder-Decoder architecture for the Grapheme-to-Phoneme conversion. In Grapheme-to-Phoneme task, a number of character units in words possess high degree of similarity with some phoneme unit(s). Thus, we make an attempt to capture this characteristic using copy-augmented architecture. Our proposed model automatically learns to generate phoneme sequences during inference by copying source token embeddings to the decoder's output in a controlled manner. To our knowledge, this is the first time the copy-augmentation is being investigated for Grapheme-to-Phoneme conversion task. We validate our experiments over accented and non-accented publicly available CMU-Dict datasets and achieve State-of-The-Art performances in terms of both phoneme and word error rates. Further, we verify the applicability of our proposed approach on Hindi Lexicon and show that our model outperforms all recent State-of-The-Art results.","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving Grapheme-to-Phoneme Conversion by Investigating Copying Mechanism in Recurrent Architectures\",\"authors\":\"Abhishek Niranjan, M. Shaik\",\"doi\":\"10.1109/ASRU46091.2019.9003729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attention driven encoder-decoder architectures have become highly successful in various sequence-to-sequence learning tasks. We propose copy-augmented Bi-directional Long Short-Term Memory based Encoder-Decoder architecture for the Grapheme-to-Phoneme conversion. In Grapheme-to-Phoneme task, a number of character units in words possess high degree of similarity with some phoneme unit(s). Thus, we make an attempt to capture this characteristic using copy-augmented architecture. Our proposed model automatically learns to generate phoneme sequences during inference by copying source token embeddings to the decoder's output in a controlled manner. To our knowledge, this is the first time the copy-augmentation is being investigated for Grapheme-to-Phoneme conversion task. We validate our experiments over accented and non-accented publicly available CMU-Dict datasets and achieve State-of-The-Art performances in terms of both phoneme and word error rates. Further, we verify the applicability of our proposed approach on Hindi Lexicon and show that our model outperforms all recent State-of-The-Art results.\",\"PeriodicalId\":150913,\"journal\":{\"name\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU46091.2019.9003729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9003729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

注意驱动的编码器-解码器架构在各种序列到序列的学习任务中非常成功。我们提出了基于复制增强双向长短期记忆的编码器-解码器结构,用于字素到音素的转换。在字素-音素任务中,单词中的许多字符单元与某些音素单元具有高度的相似性。因此,我们尝试使用复制增强架构来捕捉这一特征。我们提出的模型通过以受控的方式将源标记嵌入复制到解码器的输出中,在推理过程中自动学习生成音素序列。据我们所知,这是第一次对字素到音素转换任务的复制增强进行研究。我们在重音和非重音公开可用的CMU-Dict数据集上验证了我们的实验,并在音素和单词错误率方面实现了最先进的性能。此外,我们验证了我们提出的方法在Hindi Lexicon上的适用性,并表明我们的模型优于所有最近的最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Grapheme-to-Phoneme Conversion by Investigating Copying Mechanism in Recurrent Architectures
Attention driven encoder-decoder architectures have become highly successful in various sequence-to-sequence learning tasks. We propose copy-augmented Bi-directional Long Short-Term Memory based Encoder-Decoder architecture for the Grapheme-to-Phoneme conversion. In Grapheme-to-Phoneme task, a number of character units in words possess high degree of similarity with some phoneme unit(s). Thus, we make an attempt to capture this characteristic using copy-augmented architecture. Our proposed model automatically learns to generate phoneme sequences during inference by copying source token embeddings to the decoder's output in a controlled manner. To our knowledge, this is the first time the copy-augmentation is being investigated for Grapheme-to-Phoneme conversion task. We validate our experiments over accented and non-accented publicly available CMU-Dict datasets and achieve State-of-The-Art performances in terms of both phoneme and word error rates. Further, we verify the applicability of our proposed approach on Hindi Lexicon and show that our model outperforms all recent State-of-The-Art results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信