驾驶员困倦面部表情的检测

Taro Nakamura, Akinobu Maejima, S. Morishima
{"title":"驾驶员困倦面部表情的检测","authors":"Taro Nakamura, Akinobu Maejima, S. Morishima","doi":"10.1109/ACPR.2013.176","DOIUrl":null,"url":null,"abstract":"We propose a method for the estimation of the degree of a driver's drowsiness on basis of changes in facial expressions captured by an IR camera. Typically, drowsiness is accompanied by falling of eyelids. Therefore, most of the related studies have focused on tracking eyelid movement by monitoring facial feature points. However, textural changes that arise from frowning are also very important and sensitive features in the initial stage of drowsiness, and it is difficult to detect such changes solely using facial feature points. In this paper, we propose a more precise drowsiness-degree estimation method considering wrinkles change by calculating local edge intensity on faces that expresses drowsiness more directly in the initial stage.","PeriodicalId":365633,"journal":{"name":"2013 2nd IAPR Asian Conference on Pattern Recognition","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Detection of Driver's Drowsy Facial Expression\",\"authors\":\"Taro Nakamura, Akinobu Maejima, S. Morishima\",\"doi\":\"10.1109/ACPR.2013.176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method for the estimation of the degree of a driver's drowsiness on basis of changes in facial expressions captured by an IR camera. Typically, drowsiness is accompanied by falling of eyelids. Therefore, most of the related studies have focused on tracking eyelid movement by monitoring facial feature points. However, textural changes that arise from frowning are also very important and sensitive features in the initial stage of drowsiness, and it is difficult to detect such changes solely using facial feature points. In this paper, we propose a more precise drowsiness-degree estimation method considering wrinkles change by calculating local edge intensity on faces that expresses drowsiness more directly in the initial stage.\",\"PeriodicalId\":365633,\"journal\":{\"name\":\"2013 2nd IAPR Asian Conference on Pattern Recognition\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 2nd IAPR Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2013.176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 2nd IAPR Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2013.176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们提出了一种基于红外相机捕捉到的面部表情变化来估计驾驶员困倦程度的方法。通常,困倦伴随着眼皮下垂。因此,大多数相关研究都集中在通过监测面部特征点来跟踪眼睑运动。然而,皱眉引起的肌理变化也是困倦初期非常重要和敏感的特征,仅凭面部特征点很难检测到这种变化。在本文中,我们提出了一种考虑皱纹变化的更精确的困倦程度估计方法,通过计算在初始阶段更直接表达困倦的面部的局部边缘强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of Driver's Drowsy Facial Expression
We propose a method for the estimation of the degree of a driver's drowsiness on basis of changes in facial expressions captured by an IR camera. Typically, drowsiness is accompanied by falling of eyelids. Therefore, most of the related studies have focused on tracking eyelid movement by monitoring facial feature points. However, textural changes that arise from frowning are also very important and sensitive features in the initial stage of drowsiness, and it is difficult to detect such changes solely using facial feature points. In this paper, we propose a more precise drowsiness-degree estimation method considering wrinkles change by calculating local edge intensity on faces that expresses drowsiness more directly in the initial stage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信