基于认知驱动采样的神经网络双带FSS反设计

Enze Zhu, Xingxing Xu, Zhun Wei, W. Yin, Ruilong Chen
{"title":"基于认知驱动采样的神经网络双带FSS反设计","authors":"Enze Zhu, Xingxing Xu, Zhun Wei, W. Yin, Ruilong Chen","doi":"10.1109/NEMO49486.2020.9343436","DOIUrl":null,"url":null,"abstract":"Recently, artificial neural network (ANN) attracts intensive attentions on solving electromagnetic (EM) inverse problems. In an inverse design of frequency selective surface (FSS) model with ANN, the inputs are S-parameters, while the outputs are structure parameters or material parameters. However, faced with applications where S-parameters vary in a large frequency range with different curve shapes, such as multi-band microwave devices, simple sampling with equal spacing may cause the input dimension to be too large and will require more complex neural network. In this paper, a cognition-driven sampling method is introduced to solve this problem. A parameter-extraction modeling of dual-passband FSS using both equidistant sampling and proposed method is presented and the well-designed FSS is further fabricated to validate the technique.","PeriodicalId":305562,"journal":{"name":"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dual-Band FSS Inverse Design Using ANN with Cognition-Driven Sampling\",\"authors\":\"Enze Zhu, Xingxing Xu, Zhun Wei, W. Yin, Ruilong Chen\",\"doi\":\"10.1109/NEMO49486.2020.9343436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, artificial neural network (ANN) attracts intensive attentions on solving electromagnetic (EM) inverse problems. In an inverse design of frequency selective surface (FSS) model with ANN, the inputs are S-parameters, while the outputs are structure parameters or material parameters. However, faced with applications where S-parameters vary in a large frequency range with different curve shapes, such as multi-band microwave devices, simple sampling with equal spacing may cause the input dimension to be too large and will require more complex neural network. In this paper, a cognition-driven sampling method is introduced to solve this problem. A parameter-extraction modeling of dual-passband FSS using both equidistant sampling and proposed method is presented and the well-designed FSS is further fabricated to validate the technique.\",\"PeriodicalId\":305562,\"journal\":{\"name\":\"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMO49486.2020.9343436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO49486.2020.9343436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,人工神经网络(ANN)在求解电磁逆问题方面受到了广泛的关注。在基于人工神经网络的频率选择曲面(FSS)模型反设计中,输入为s参数,输出为结构参数或材料参数。然而,面对s参数在大频率范围内变化且曲线形状不同的应用,如多波段微波器件,简单的等间距采样可能会导致输入维数过大,需要更复杂的神经网络。本文提出了一种认知驱动的采样方法来解决这一问题。提出了一种采用等距采样和该方法的双通带FSS参数提取模型,并进一步制作了设计良好的FSS以验证该技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual-Band FSS Inverse Design Using ANN with Cognition-Driven Sampling
Recently, artificial neural network (ANN) attracts intensive attentions on solving electromagnetic (EM) inverse problems. In an inverse design of frequency selective surface (FSS) model with ANN, the inputs are S-parameters, while the outputs are structure parameters or material parameters. However, faced with applications where S-parameters vary in a large frequency range with different curve shapes, such as multi-band microwave devices, simple sampling with equal spacing may cause the input dimension to be too large and will require more complex neural network. In this paper, a cognition-driven sampling method is introduced to solve this problem. A parameter-extraction modeling of dual-passband FSS using both equidistant sampling and proposed method is presented and the well-designed FSS is further fabricated to validate the technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信