Enze Zhu, Xingxing Xu, Zhun Wei, W. Yin, Ruilong Chen
{"title":"基于认知驱动采样的神经网络双带FSS反设计","authors":"Enze Zhu, Xingxing Xu, Zhun Wei, W. Yin, Ruilong Chen","doi":"10.1109/NEMO49486.2020.9343436","DOIUrl":null,"url":null,"abstract":"Recently, artificial neural network (ANN) attracts intensive attentions on solving electromagnetic (EM) inverse problems. In an inverse design of frequency selective surface (FSS) model with ANN, the inputs are S-parameters, while the outputs are structure parameters or material parameters. However, faced with applications where S-parameters vary in a large frequency range with different curve shapes, such as multi-band microwave devices, simple sampling with equal spacing may cause the input dimension to be too large and will require more complex neural network. In this paper, a cognition-driven sampling method is introduced to solve this problem. A parameter-extraction modeling of dual-passband FSS using both equidistant sampling and proposed method is presented and the well-designed FSS is further fabricated to validate the technique.","PeriodicalId":305562,"journal":{"name":"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dual-Band FSS Inverse Design Using ANN with Cognition-Driven Sampling\",\"authors\":\"Enze Zhu, Xingxing Xu, Zhun Wei, W. Yin, Ruilong Chen\",\"doi\":\"10.1109/NEMO49486.2020.9343436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, artificial neural network (ANN) attracts intensive attentions on solving electromagnetic (EM) inverse problems. In an inverse design of frequency selective surface (FSS) model with ANN, the inputs are S-parameters, while the outputs are structure parameters or material parameters. However, faced with applications where S-parameters vary in a large frequency range with different curve shapes, such as multi-band microwave devices, simple sampling with equal spacing may cause the input dimension to be too large and will require more complex neural network. In this paper, a cognition-driven sampling method is introduced to solve this problem. A parameter-extraction modeling of dual-passband FSS using both equidistant sampling and proposed method is presented and the well-designed FSS is further fabricated to validate the technique.\",\"PeriodicalId\":305562,\"journal\":{\"name\":\"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMO49486.2020.9343436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMO49486.2020.9343436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dual-Band FSS Inverse Design Using ANN with Cognition-Driven Sampling
Recently, artificial neural network (ANN) attracts intensive attentions on solving electromagnetic (EM) inverse problems. In an inverse design of frequency selective surface (FSS) model with ANN, the inputs are S-parameters, while the outputs are structure parameters or material parameters. However, faced with applications where S-parameters vary in a large frequency range with different curve shapes, such as multi-band microwave devices, simple sampling with equal spacing may cause the input dimension to be too large and will require more complex neural network. In this paper, a cognition-driven sampling method is introduced to solve this problem. A parameter-extraction modeling of dual-passband FSS using both equidistant sampling and proposed method is presented and the well-designed FSS is further fabricated to validate the technique.