基于多智能体强化学习的抗干扰宽带认知无线电

Mohamed A. Aref, S. Jayaweera
{"title":"基于多智能体强化学习的抗干扰宽带认知无线电","authors":"Mohamed A. Aref, S. Jayaweera","doi":"10.4018/IJSSCI.2018070101","DOIUrl":null,"url":null,"abstract":"This article presents a design of a wideband autonomous cognitive radio (WACR) for anti-jamming and interference-avoidance. The proposed system model allows multiple WACRs to simultaneously operate over the same spectrum range producing a multi-agent environment. The objective of each radio is to predict and evade a dynamic jammer signal as well as avoiding transmissions of other WACRs. The proposed cognitive framework is made of two operations: sensing and transmission. Each operation is helped by its own learning algorithm based on Q-learning, but both will be experiencing the same RF environment. The simulation results indicate that the proposed cognitive anti-jamming technique has low computational complexity and significantly outperforms non-cognitive sub-band selection policy while being sufficiently robust against the impact of sensing errors.","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Jamming-Resilient Wideband Cognitive Radios with Multi-Agent Reinforcement Learning\",\"authors\":\"Mohamed A. Aref, S. Jayaweera\",\"doi\":\"10.4018/IJSSCI.2018070101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a design of a wideband autonomous cognitive radio (WACR) for anti-jamming and interference-avoidance. The proposed system model allows multiple WACRs to simultaneously operate over the same spectrum range producing a multi-agent environment. The objective of each radio is to predict and evade a dynamic jammer signal as well as avoiding transmissions of other WACRs. The proposed cognitive framework is made of two operations: sensing and transmission. Each operation is helped by its own learning algorithm based on Q-learning, but both will be experiencing the same RF environment. The simulation results indicate that the proposed cognitive anti-jamming technique has low computational complexity and significantly outperforms non-cognitive sub-band selection policy while being sufficiently robust against the impact of sensing errors.\",\"PeriodicalId\":432255,\"journal\":{\"name\":\"Int. J. Softw. Sci. Comput. Intell.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Softw. Sci. Comput. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJSSCI.2018070101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSSCI.2018070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种宽带自主认知无线电(WACR)的抗干扰和抗干扰设计。所提出的系统模型允许多个wacr在相同的频谱范围内同时运行,从而产生一个多智能体环境。每个无线电的目标是预测和躲避动态干扰信号以及避免其他wacr的传输。所提出的认知框架由两个操作组成:感知和传递。每个操作都有自己的基于q学习的学习算法,但它们都将经历相同的RF环境。仿真结果表明,所提出的认知抗干扰技术具有较低的计算复杂度,显著优于非认知子带选择策略,同时对感知误差的影响具有足够的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jamming-Resilient Wideband Cognitive Radios with Multi-Agent Reinforcement Learning
This article presents a design of a wideband autonomous cognitive radio (WACR) for anti-jamming and interference-avoidance. The proposed system model allows multiple WACRs to simultaneously operate over the same spectrum range producing a multi-agent environment. The objective of each radio is to predict and evade a dynamic jammer signal as well as avoiding transmissions of other WACRs. The proposed cognitive framework is made of two operations: sensing and transmission. Each operation is helped by its own learning algorithm based on Q-learning, but both will be experiencing the same RF environment. The simulation results indicate that the proposed cognitive anti-jamming technique has low computational complexity and significantly outperforms non-cognitive sub-band selection policy while being sufficiently robust against the impact of sensing errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信