能见度相机:在哪里和如何看

MAED '12 Pub Date : 2012-11-02 DOI:10.1145/2390832.2390835
Nathan Graves, S. Newsam
{"title":"能见度相机:在哪里和如何看","authors":"Nathan Graves, S. Newsam","doi":"10.1145/2390832.2390835","DOIUrl":null,"url":null,"abstract":"This paper investigates image processing and pattern recognition techniques to estimate light extinction based on the visual content of images from static cameras. We propose two predictive models that incorporate multiple scene regions into the estimation: regression trees and multivariate linear regression. Incorporating multiple regions is important since regions at different distances are effective for estimating light extinction under different visibility regimes. We evaluate our models using a sizable dataset of images and ground truth light extinction values from a visibility camera system in Phoenix, Arizona.","PeriodicalId":173175,"journal":{"name":"MAED '12","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Visibility cameras: where and how to look\",\"authors\":\"Nathan Graves, S. Newsam\",\"doi\":\"10.1145/2390832.2390835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates image processing and pattern recognition techniques to estimate light extinction based on the visual content of images from static cameras. We propose two predictive models that incorporate multiple scene regions into the estimation: regression trees and multivariate linear regression. Incorporating multiple regions is important since regions at different distances are effective for estimating light extinction under different visibility regimes. We evaluate our models using a sizable dataset of images and ground truth light extinction values from a visibility camera system in Phoenix, Arizona.\",\"PeriodicalId\":173175,\"journal\":{\"name\":\"MAED '12\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MAED '12\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2390832.2390835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAED '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2390832.2390835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究了基于静态相机图像视觉内容的消光估计的图像处理和模式识别技术。我们提出了两种将多个场景区域纳入估计的预测模型:回归树和多元线性回归。结合多个区域是很重要的,因为不同距离的区域对于估计不同能见度下的光消是有效的。我们使用来自亚利桑那州凤凰城能见度相机系统的大量图像数据集和地面真光消光值来评估我们的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visibility cameras: where and how to look
This paper investigates image processing and pattern recognition techniques to estimate light extinction based on the visual content of images from static cameras. We propose two predictive models that incorporate multiple scene regions into the estimation: regression trees and multivariate linear regression. Incorporating multiple regions is important since regions at different distances are effective for estimating light extinction under different visibility regimes. We evaluate our models using a sizable dataset of images and ground truth light extinction values from a visibility camera system in Phoenix, Arizona.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信