{"title":"基于降级消息集的机会码和广播码","authors":"S. Diggavi, David Tse","doi":"10.1109/ITW.2006.1633817","DOIUrl":null,"url":null,"abstract":"Diversity embedded codes are opportunistic codes which take advantage of good channel realizations while ensuring at least part of the information is received reliably for bad channels. We establish a connection between these codes and degraded message set broadcast codes. We characterize the achievable rate region for the parallel Gaussian degraded message set broadcast problem, when only the strongest user needs the private information. Using this, we partially characterize the set of achievable rate-diversity tuples for the diversity embedded problem for parallel fading channels.","PeriodicalId":293144,"journal":{"name":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"On opportunistic codes and broadcast codes with degraded message sets\",\"authors\":\"S. Diggavi, David Tse\",\"doi\":\"10.1109/ITW.2006.1633817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diversity embedded codes are opportunistic codes which take advantage of good channel realizations while ensuring at least part of the information is received reliably for bad channels. We establish a connection between these codes and degraded message set broadcast codes. We characterize the achievable rate region for the parallel Gaussian degraded message set broadcast problem, when only the strongest user needs the private information. Using this, we partially characterize the set of achievable rate-diversity tuples for the diversity embedded problem for parallel fading channels.\",\"PeriodicalId\":293144,\"journal\":{\"name\":\"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2006.1633817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2006.1633817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On opportunistic codes and broadcast codes with degraded message sets
Diversity embedded codes are opportunistic codes which take advantage of good channel realizations while ensuring at least part of the information is received reliably for bad channels. We establish a connection between these codes and degraded message set broadcast codes. We characterize the achievable rate region for the parallel Gaussian degraded message set broadcast problem, when only the strongest user needs the private information. Using this, we partially characterize the set of achievable rate-diversity tuples for the diversity embedded problem for parallel fading channels.