基于半监督学习和生成数据增强的低数据区自动目标识别

Fadoua Khmaissia, H. Frigui
{"title":"基于半监督学习和生成数据增强的低数据区自动目标识别","authors":"Fadoua Khmaissia, H. Frigui","doi":"10.1109/CVPRW59228.2023.00521","DOIUrl":null,"url":null,"abstract":"We propose a new strategy to improve Automatic Target Recognition (ATR) from infrared (IR) images by leveraging semi-supervised learning and generative data augmentation.Our approach is twofold: first, we use an automatic detector’s outputs to augment the existing labeled and unlabeled data. Second, we introduce a confidence-guided data generative augmentation technique that focuses on learning from the most challenging regions of the feature space, to generate synthetic data which can be used as extra unlabeled data.We evaluate the proposed approach on a public dataset with IR imagery of civilian and military vehicles. We show that yields substantial percentage improvements in ATR performance relative to both the baseline fully supervised model trained using the existing data only, and a semi-supervised model trained without generative data augmentation. For instance, for the most challenging data partition, our method achieves a relative increase of 29.51% over the baseline fully supervised model and a relative improvement of 2.59% over the semi-supervised model. These results demonstrate the effectiveness of our approach in low-data regimes, where labeled data is limited or expensive to obtain.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Automatic Target Recognition in Low Data Regime using Semi-Supervised Learning and Generative Data Augmentation\",\"authors\":\"Fadoua Khmaissia, H. Frigui\",\"doi\":\"10.1109/CVPRW59228.2023.00521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new strategy to improve Automatic Target Recognition (ATR) from infrared (IR) images by leveraging semi-supervised learning and generative data augmentation.Our approach is twofold: first, we use an automatic detector’s outputs to augment the existing labeled and unlabeled data. Second, we introduce a confidence-guided data generative augmentation technique that focuses on learning from the most challenging regions of the feature space, to generate synthetic data which can be used as extra unlabeled data.We evaluate the proposed approach on a public dataset with IR imagery of civilian and military vehicles. We show that yields substantial percentage improvements in ATR performance relative to both the baseline fully supervised model trained using the existing data only, and a semi-supervised model trained without generative data augmentation. For instance, for the most challenging data partition, our method achieves a relative increase of 29.51% over the baseline fully supervised model and a relative improvement of 2.59% over the semi-supervised model. These results demonstrate the effectiveness of our approach in low-data regimes, where labeled data is limited or expensive to obtain.\",\"PeriodicalId\":355438,\"journal\":{\"name\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW59228.2023.00521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种利用半监督学习和生成式数据增强来提高红外图像自动目标识别(ATR)的新策略。我们的方法是双重的:首先,我们使用自动检测器的输出来增强现有的标记和未标记数据。其次,我们引入了一种置信度引导的数据生成增强技术,该技术侧重于从特征空间中最具挑战性的区域学习,以生成可用作额外未标记数据的合成数据。我们在民用和军用车辆的红外图像的公共数据集上评估了所提出的方法。我们表明,相对于仅使用现有数据训练的基线完全监督模型和未经生成数据增强训练的半监督模型,在ATR性能方面产生了实质性的百分比改进。例如,对于最具挑战性的数据分区,我们的方法比基线完全监督模型的相对提高了29.51%,比半监督模型的相对提高了2.59%。这些结果证明了我们的方法在低数据条件下的有效性,在低数据条件下,标记数据是有限的或昂贵的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Automatic Target Recognition in Low Data Regime using Semi-Supervised Learning and Generative Data Augmentation
We propose a new strategy to improve Automatic Target Recognition (ATR) from infrared (IR) images by leveraging semi-supervised learning and generative data augmentation.Our approach is twofold: first, we use an automatic detector’s outputs to augment the existing labeled and unlabeled data. Second, we introduce a confidence-guided data generative augmentation technique that focuses on learning from the most challenging regions of the feature space, to generate synthetic data which can be used as extra unlabeled data.We evaluate the proposed approach on a public dataset with IR imagery of civilian and military vehicles. We show that yields substantial percentage improvements in ATR performance relative to both the baseline fully supervised model trained using the existing data only, and a semi-supervised model trained without generative data augmentation. For instance, for the most challenging data partition, our method achieves a relative increase of 29.51% over the baseline fully supervised model and a relative improvement of 2.59% over the semi-supervised model. These results demonstrate the effectiveness of our approach in low-data regimes, where labeled data is limited or expensive to obtain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信