基于最优分区的运动捕捉数据时间聚类

Yang Yang, Hubert P. H. Shum, N. Aslam, Lanling Zeng
{"title":"基于最优分区的运动捕捉数据时间聚类","authors":"Yang Yang, Hubert P. H. Shum, N. Aslam, Lanling Zeng","doi":"10.1145/3013971.3014019","DOIUrl":null,"url":null,"abstract":"Motion capture data can be characterized as a series of multidimensional spatio-temporal data, which is recorded by tracking the number of key points in space over time with a 3-dimensional representation. Such complex characteristics make the processing of motion capture data a non-trivial task. Hence, techniques that can provide an approximated, less complicated representation of such data are highly desirable. In this paper, we propose a novel technique that uses temporal clustering to generate an approximate representation of motion capture data. First, we segment the motion in the time domain with an optimal partition algorithm so that the within-segment sum of squared error (WSSSE) is minimized. Then, we represent the motion capture data as the averages taken over all the segments, resulting in a representation of much lower complexity. Experimental results suggest that comparing with the compared methods, our proposed representation technique can better approximate the motion capture data.","PeriodicalId":269563,"journal":{"name":"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Temporal clustering of motion capture data with optimal partitioning\",\"authors\":\"Yang Yang, Hubert P. H. Shum, N. Aslam, Lanling Zeng\",\"doi\":\"10.1145/3013971.3014019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motion capture data can be characterized as a series of multidimensional spatio-temporal data, which is recorded by tracking the number of key points in space over time with a 3-dimensional representation. Such complex characteristics make the processing of motion capture data a non-trivial task. Hence, techniques that can provide an approximated, less complicated representation of such data are highly desirable. In this paper, we propose a novel technique that uses temporal clustering to generate an approximate representation of motion capture data. First, we segment the motion in the time domain with an optimal partition algorithm so that the within-segment sum of squared error (WSSSE) is minimized. Then, we represent the motion capture data as the averages taken over all the segments, resulting in a representation of much lower complexity. Experimental results suggest that comparing with the compared methods, our proposed representation technique can better approximate the motion capture data.\",\"PeriodicalId\":269563,\"journal\":{\"name\":\"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3013971.3014019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry - Volume 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3013971.3014019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

动作捕捉数据可以被描述为一系列多维时空数据,这些数据是通过跟踪空间中关键点的数量随时间的三维表示来记录的。这些复杂的特征使得运动捕捉数据的处理成为一项不平凡的任务。因此,能够提供这种数据的近似的、不太复杂的表示的技术是非常需要的。在本文中,我们提出了一种使用时间聚类来生成运动捕捉数据的近似表示的新技术。首先,我们采用最优分割算法在时域对运动进行分割,使段内误差平方和(WSSSE)最小。然后,我们将动作捕捉数据表示为所有片段的平均值,从而产生复杂性低得多的表示。实验结果表明,与已比较的方法相比,我们提出的表示方法能更好地逼近运动捕捉数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal clustering of motion capture data with optimal partitioning
Motion capture data can be characterized as a series of multidimensional spatio-temporal data, which is recorded by tracking the number of key points in space over time with a 3-dimensional representation. Such complex characteristics make the processing of motion capture data a non-trivial task. Hence, techniques that can provide an approximated, less complicated representation of such data are highly desirable. In this paper, we propose a novel technique that uses temporal clustering to generate an approximate representation of motion capture data. First, we segment the motion in the time domain with an optimal partition algorithm so that the within-segment sum of squared error (WSSSE) is minimized. Then, we represent the motion capture data as the averages taken over all the segments, resulting in a representation of much lower complexity. Experimental results suggest that comparing with the compared methods, our proposed representation technique can better approximate the motion capture data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信