基于最大出口时间最优最小化的孤立交叉口协同驾驶

Jia Wu, A. Abbas-Turki, Florent Perronnet
{"title":"基于最大出口时间最优最小化的孤立交叉口协同驾驶","authors":"Jia Wu, A. Abbas-Turki, Florent Perronnet","doi":"10.2478/amcs-2013-0058","DOIUrl":null,"url":null,"abstract":"Abstract Traditional traffic control systems based on traffic light have achieved a great success in reducing the average delay of vehicles or in improving the traffic capacity. The main idea of these systems is based on the optimization of the cycle time, the phase sequence, and the phase duration. The right-of-ways are assigned to vehicles of one or several movements for a specific time. With the emergence of cooperative driving, an innovative traffic control concept, Autonomous Intersection Management (AIM), has emerged. In the framework of AIM, the right-of-way is customized on the measurement of the vehicle state and the traffic control turns to determine the passing sequence of vehicles. Since each vehicle is considered individually, AIM faces a combinatorial optimization problem. This paper proposes a dynamic programming algorithm to find its optimal solution in polynomial time. Experimental results obtained by simulation show that the proper arrangement of the vehicle passing sequence can greatly improve traffic efficiency at intersections.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cooperative driving at isolated intersections based on the optimal minimization of the maximum exit time\",\"authors\":\"Jia Wu, A. Abbas-Turki, Florent Perronnet\",\"doi\":\"10.2478/amcs-2013-0058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Traditional traffic control systems based on traffic light have achieved a great success in reducing the average delay of vehicles or in improving the traffic capacity. The main idea of these systems is based on the optimization of the cycle time, the phase sequence, and the phase duration. The right-of-ways are assigned to vehicles of one or several movements for a specific time. With the emergence of cooperative driving, an innovative traffic control concept, Autonomous Intersection Management (AIM), has emerged. In the framework of AIM, the right-of-way is customized on the measurement of the vehicle state and the traffic control turns to determine the passing sequence of vehicles. Since each vehicle is considered individually, AIM faces a combinatorial optimization problem. This paper proposes a dynamic programming algorithm to find its optimal solution in polynomial time. Experimental results obtained by simulation show that the proper arrangement of the vehicle passing sequence can greatly improve traffic efficiency at intersections.\",\"PeriodicalId\":253470,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Sciences\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amcs-2013-0058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amcs-2013-0058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

传统的基于交通灯的交通控制系统在减少车辆平均延误或提高通行能力方面取得了很大的成功。这些系统的主要思想是基于周期时间、相序和相位持续时间的优化。在特定时间内,道路通行权分配给一个或几个移动的车辆。随着协同驾驶的出现,一种创新的交通控制理念——自主交叉口管理(AIM)应运而生。在AIM框架下,通过对车辆状态和交通管制转弯的测量来定制路权,确定车辆的通过顺序。由于每辆车都是单独考虑的,AIM面临的是一个组合优化问题。本文提出了一种动态规划算法,在多项式时间内求解该问题的最优解。仿真实验结果表明,合理安排车辆通行顺序可以大大提高交叉口的通行效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cooperative driving at isolated intersections based on the optimal minimization of the maximum exit time
Abstract Traditional traffic control systems based on traffic light have achieved a great success in reducing the average delay of vehicles or in improving the traffic capacity. The main idea of these systems is based on the optimization of the cycle time, the phase sequence, and the phase duration. The right-of-ways are assigned to vehicles of one or several movements for a specific time. With the emergence of cooperative driving, an innovative traffic control concept, Autonomous Intersection Management (AIM), has emerged. In the framework of AIM, the right-of-way is customized on the measurement of the vehicle state and the traffic control turns to determine the passing sequence of vehicles. Since each vehicle is considered individually, AIM faces a combinatorial optimization problem. This paper proposes a dynamic programming algorithm to find its optimal solution in polynomial time. Experimental results obtained by simulation show that the proper arrangement of the vehicle passing sequence can greatly improve traffic efficiency at intersections.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信