实时计算与嵌入式系统设计的演变

Tei-Wei Kuo, Jian-Jia Chen, Yuan-Hao Chang, P. Hsiu
{"title":"实时计算与嵌入式系统设计的演变","authors":"Tei-Wei Kuo, Jian-Jia Chen, Yuan-Hao Chang, P. Hsiu","doi":"10.1109/RTSS.2018.00011","DOIUrl":null,"url":null,"abstract":"Real-time computing provides insightful ways to explore the optimization in resource usages, especially from the time point of view. Nevertheless, real-time task scheduling is recognized by its high complexity when there are non-preemptive shared resources and multiple processors. When more and more practical factors in system designs are considered, such as energy consumption and memory allocation, even some sub-problems in real-time task scheduling become intractable. Although people often criticize various artificial assumptions in real-time task scheduling, they have to admit that ideas in real-time computing and their extensions, such as tradeoff in cost, performance, energy, and even the quality of service, can be applied to multi-dimensional optimization in system designs. In this direction, we witness the rapid development of the embedded system industry and join the task force in system designs, especially mobile devices and non-volatile memory systems. Resource management on mobile devices, with a special emphasis on user experience, should not only consider the response time but also the visual perception of users. Non-volatile memory has also blurred the boundary between the memory and the storage. It enables certain unified considerations of the main memory and storage and also in-memory computing. It shows the ways to break the boundaries between hardware and software layers and have better integration of computing and memory/storage units. The advances in mobile systems and memory innovations inspire the evolution of embedded system designs and have also brought us insights to solutions regarding how systems should be restructured and how computing should be done. They might also provide their feedback to real-time computing and even shape the future direction of real-time computing in various innovative ways.","PeriodicalId":294784,"journal":{"name":"2018 IEEE Real-Time Systems Symposium (RTSS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Real-Time Computing and the Evolution of Embedded System Designs\",\"authors\":\"Tei-Wei Kuo, Jian-Jia Chen, Yuan-Hao Chang, P. Hsiu\",\"doi\":\"10.1109/RTSS.2018.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time computing provides insightful ways to explore the optimization in resource usages, especially from the time point of view. Nevertheless, real-time task scheduling is recognized by its high complexity when there are non-preemptive shared resources and multiple processors. When more and more practical factors in system designs are considered, such as energy consumption and memory allocation, even some sub-problems in real-time task scheduling become intractable. Although people often criticize various artificial assumptions in real-time task scheduling, they have to admit that ideas in real-time computing and their extensions, such as tradeoff in cost, performance, energy, and even the quality of service, can be applied to multi-dimensional optimization in system designs. In this direction, we witness the rapid development of the embedded system industry and join the task force in system designs, especially mobile devices and non-volatile memory systems. Resource management on mobile devices, with a special emphasis on user experience, should not only consider the response time but also the visual perception of users. Non-volatile memory has also blurred the boundary between the memory and the storage. It enables certain unified considerations of the main memory and storage and also in-memory computing. It shows the ways to break the boundaries between hardware and software layers and have better integration of computing and memory/storage units. The advances in mobile systems and memory innovations inspire the evolution of embedded system designs and have also brought us insights to solutions regarding how systems should be restructured and how computing should be done. They might also provide their feedback to real-time computing and even shape the future direction of real-time computing in various innovative ways.\",\"PeriodicalId\":294784,\"journal\":{\"name\":\"2018 IEEE Real-Time Systems Symposium (RTSS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Real-Time Systems Symposium (RTSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSS.2018.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2018.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

实时计算提供了深入的方法来探索资源使用的优化,特别是从时间的角度来看。然而,当存在非抢占式共享资源和多处理器时,实时任务调度的复杂性较高。当系统设计中考虑到越来越多的实际因素,如能耗和内存分配时,实时任务调度中的一些子问题也变得棘手起来。尽管人们经常批评实时任务调度中的各种人为假设,但他们不得不承认,实时计算中的思想及其扩展,如成本、性能、能源甚至服务质量的权衡,都可以应用于系统设计中的多维优化。在这个方向上,我们见证了嵌入式系统行业的快速发展,并加入了系统设计的工作组,特别是移动设备和非易失性存储系统。移动设备上的资源管理,特别强调用户体验,不仅要考虑响应时间,还要考虑用户的视觉感受。非易失性存储器也模糊了存储器和存储器之间的界限。它可以统一考虑主内存和存储以及内存中的计算。它展示了打破硬件和软件层之间界限的方法,以及更好地集成计算和内存/存储单元的方法。移动系统和内存创新的进步激发了嵌入式系统设计的演变,也给我们带来了关于系统应该如何重组和计算应该如何完成的解决方案的见解。他们还可能为实时计算提供反馈,甚至以各种创新的方式塑造实时计算的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Computing and the Evolution of Embedded System Designs
Real-time computing provides insightful ways to explore the optimization in resource usages, especially from the time point of view. Nevertheless, real-time task scheduling is recognized by its high complexity when there are non-preemptive shared resources and multiple processors. When more and more practical factors in system designs are considered, such as energy consumption and memory allocation, even some sub-problems in real-time task scheduling become intractable. Although people often criticize various artificial assumptions in real-time task scheduling, they have to admit that ideas in real-time computing and their extensions, such as tradeoff in cost, performance, energy, and even the quality of service, can be applied to multi-dimensional optimization in system designs. In this direction, we witness the rapid development of the embedded system industry and join the task force in system designs, especially mobile devices and non-volatile memory systems. Resource management on mobile devices, with a special emphasis on user experience, should not only consider the response time but also the visual perception of users. Non-volatile memory has also blurred the boundary between the memory and the storage. It enables certain unified considerations of the main memory and storage and also in-memory computing. It shows the ways to break the boundaries between hardware and software layers and have better integration of computing and memory/storage units. The advances in mobile systems and memory innovations inspire the evolution of embedded system designs and have also brought us insights to solutions regarding how systems should be restructured and how computing should be done. They might also provide their feedback to real-time computing and even shape the future direction of real-time computing in various innovative ways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信