轮廓约束下距离图像的分层分割

P. Boulanger, G. Osorio, F. Prieto
{"title":"轮廓约束下距离图像的分层分割","authors":"P. Boulanger, G. Osorio, F. Prieto","doi":"10.1109/3DIM.2005.53","DOIUrl":null,"url":null,"abstract":"This paper describes a new algorithm to segment in continuous parametric regions range images. The algorithm starts with an initial partition of small first order regions using a robust fitting algorithm constrained by the detection of depth and orientation discontinuities. The algorithm then optimally group these regions into larger and larger regions using parametric functions until an approximation limit is reached. The algorithm uses Bayesian decision theory to determine the local optimal grouping and the complexity of the parametric model used to represent the range signal. After the segmentation process an exact description of the boundary of each region is computed from the mutual intersections of the extracted surfaces. Experimental results show significant improvement of region boundary localization. A systematic comparison of our algorithm to the most well known algorithm in the literature is presented to highlight the contributions of this paper.","PeriodicalId":170883,"journal":{"name":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hierarchical segmentation of range images with contour constraints\",\"authors\":\"P. Boulanger, G. Osorio, F. Prieto\",\"doi\":\"10.1109/3DIM.2005.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new algorithm to segment in continuous parametric regions range images. The algorithm starts with an initial partition of small first order regions using a robust fitting algorithm constrained by the detection of depth and orientation discontinuities. The algorithm then optimally group these regions into larger and larger regions using parametric functions until an approximation limit is reached. The algorithm uses Bayesian decision theory to determine the local optimal grouping and the complexity of the parametric model used to represent the range signal. After the segmentation process an exact description of the boundary of each region is computed from the mutual intersections of the extracted surfaces. Experimental results show significant improvement of region boundary localization. A systematic comparison of our algorithm to the most well known algorithm in the literature is presented to highlight the contributions of this paper.\",\"PeriodicalId\":170883,\"journal\":{\"name\":\"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DIM.2005.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DIM.2005.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种新的连续参数区域范围图像分割算法。该算法在深度和方向不连续性检测约束下,采用鲁棒拟合算法对小一阶区域进行初始划分。然后,该算法使用参数函数将这些区域优化分组为越来越大的区域,直到达到近似极限。该算法利用贝叶斯决策理论确定局部最优分组和用于表示距离信号的参数模型的复杂度。在分割过程之后,从提取的曲面的相互交点计算出每个区域边界的精确描述。实验结果表明,改进后的区域边界定位效果显著。将我们的算法与文献中最著名的算法进行系统比较,以突出本文的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical segmentation of range images with contour constraints
This paper describes a new algorithm to segment in continuous parametric regions range images. The algorithm starts with an initial partition of small first order regions using a robust fitting algorithm constrained by the detection of depth and orientation discontinuities. The algorithm then optimally group these regions into larger and larger regions using parametric functions until an approximation limit is reached. The algorithm uses Bayesian decision theory to determine the local optimal grouping and the complexity of the parametric model used to represent the range signal. After the segmentation process an exact description of the boundary of each region is computed from the mutual intersections of the extracted surfaces. Experimental results show significant improvement of region boundary localization. A systematic comparison of our algorithm to the most well known algorithm in the literature is presented to highlight the contributions of this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信