近似接触度量结构的Reeb矢量场为仿射运动

L. Ignatochkina
{"title":"近似接触度量结构的Reeb矢量场为仿射运动","authors":"L. Ignatochkina","doi":"10.5922/0321-4796-2022-53-6","DOIUrl":null,"url":null,"abstract":"Smooth manifold with almost contact metric structure (i. e., almost contact metric manifold) was considered in this paper. We used a modern version of Cartan’s method of external forms to conduct our study. We assume that its Reeb vector field is affine motion. We got formulas for components of second covariant differential of contact form for an arbi­trary almost contact metric manifold. Criterion for affine motion of Reeb vector field has been obtained for arbitrary almost contact metric mani­fold in this paper. It is proved that if Reeb vector field of almost contact structure is affine motion then sixth structural tensor of almost contact metric structure is vanishing. It is proved that if Reeb vector field is affine motion and torse-forming vector field then Reeb vector field is Killing vector field. It is proved that if Reeb vector field of almost contact metric structure is torse-forming vector field and it is not Killing vector field then it is not affine motion.","PeriodicalId":114406,"journal":{"name":"Differential Geometry of Manifolds of Figures","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reeb vector field of almost contact metric structure as affine motion\",\"authors\":\"L. Ignatochkina\",\"doi\":\"10.5922/0321-4796-2022-53-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smooth manifold with almost contact metric structure (i. e., almost contact metric manifold) was considered in this paper. We used a modern version of Cartan’s method of external forms to conduct our study. We assume that its Reeb vector field is affine motion. We got formulas for components of second covariant differential of contact form for an arbi­trary almost contact metric manifold. Criterion for affine motion of Reeb vector field has been obtained for arbitrary almost contact metric mani­fold in this paper. It is proved that if Reeb vector field of almost contact structure is affine motion then sixth structural tensor of almost contact metric structure is vanishing. It is proved that if Reeb vector field is affine motion and torse-forming vector field then Reeb vector field is Killing vector field. It is proved that if Reeb vector field of almost contact metric structure is torse-forming vector field and it is not Killing vector field then it is not affine motion.\",\"PeriodicalId\":114406,\"journal\":{\"name\":\"Differential Geometry of Manifolds of Figures\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry of Manifolds of Figures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5922/0321-4796-2022-53-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry of Manifolds of Figures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5922/0321-4796-2022-53-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有几乎接触度量结构的光滑流形(即几乎接触度量流形)。我们使用了Cartan的外部形式方法的现代版本来进行我们的研究。我们假设它的Reeb向量场是仿射运动。得到了任意几乎接触度量流形接触形式的二阶协变微分分量的表达式。本文给出了任意几乎接触度量多褶Reeb向量场仿射运动的判据。证明了如果几乎接触结构的Reeb向量场是仿射运动,那么几乎接触度量结构的第六个结构张量是消失的。证明了如果Reeb向量场是仿射运动和变形向量场,那么Reeb向量场就是杀戮向量场。证明了如果几乎接触度量结构的Reeb矢量场是扭形矢量场,而不是杀戮矢量场,那么它就不是仿射运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reeb vector field of almost contact metric structure as affine motion
Smooth manifold with almost contact metric structure (i. e., almost contact metric manifold) was considered in this paper. We used a modern version of Cartan’s method of external forms to conduct our study. We assume that its Reeb vector field is affine motion. We got formulas for components of second covariant differential of contact form for an arbi­trary almost contact metric manifold. Criterion for affine motion of Reeb vector field has been obtained for arbitrary almost contact metric mani­fold in this paper. It is proved that if Reeb vector field of almost contact structure is affine motion then sixth structural tensor of almost contact metric structure is vanishing. It is proved that if Reeb vector field is affine motion and torse-forming vector field then Reeb vector field is Killing vector field. It is proved that if Reeb vector field of almost contact metric structure is torse-forming vector field and it is not Killing vector field then it is not affine motion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信