基于人工神经网络的轨道牵引蓄电池建模

René Bauer, S. Reimann, P. Gratzfeld
{"title":"基于人工神经网络的轨道牵引蓄电池建模","authors":"René Bauer, S. Reimann, P. Gratzfeld","doi":"10.1109/ITEC51675.2021.9490180","DOIUrl":null,"url":null,"abstract":"The development of novel operational strategies for battery electric trains requires a vehicle model including the traction battery. This paper proposes a method to generate accurate traction battery models on system level for application in a simulation model of battery electric multiple units. Artificial neural networks are used to identify the coherences within real system data from a traction battery used in an electric bus. Two approaches are examined to estimate the terminal voltage: a feedforward neural network and a long short-term memory network. Model generation is followed by a comparison with an existing physics-based battery model in order to prove the increase of accuracy.","PeriodicalId":339989,"journal":{"name":"2021 IEEE Transportation Electrification Conference & Expo (ITEC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of Traction Batteries for Rail Applications Using Artificial Neural Networks\",\"authors\":\"René Bauer, S. Reimann, P. Gratzfeld\",\"doi\":\"10.1109/ITEC51675.2021.9490180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of novel operational strategies for battery electric trains requires a vehicle model including the traction battery. This paper proposes a method to generate accurate traction battery models on system level for application in a simulation model of battery electric multiple units. Artificial neural networks are used to identify the coherences within real system data from a traction battery used in an electric bus. Two approaches are examined to estimate the terminal voltage: a feedforward neural network and a long short-term memory network. Model generation is followed by a comparison with an existing physics-based battery model in order to prove the increase of accuracy.\",\"PeriodicalId\":339989,\"journal\":{\"name\":\"2021 IEEE Transportation Electrification Conference & Expo (ITEC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Transportation Electrification Conference & Expo (ITEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITEC51675.2021.9490180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Transportation Electrification Conference & Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC51675.2021.9490180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电池电动列车的新型运行策略的发展需要一个包括牵引电池的车辆模型。本文提出了一种在系统级上生成精确牵引蓄电池模型的方法,用于蓄电池电力多机组仿真模型。利用人工神经网络对电动客车牵引蓄电池实际系统数据的相干性进行了识别。研究了两种估计终端电压的方法:前馈神经网络和长短期记忆网络。在模型生成之后,与现有的基于物理的电池模型进行了比较,以证明准确性的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling of Traction Batteries for Rail Applications Using Artificial Neural Networks
The development of novel operational strategies for battery electric trains requires a vehicle model including the traction battery. This paper proposes a method to generate accurate traction battery models on system level for application in a simulation model of battery electric multiple units. Artificial neural networks are used to identify the coherences within real system data from a traction battery used in an electric bus. Two approaches are examined to estimate the terminal voltage: a feedforward neural network and a long short-term memory network. Model generation is followed by a comparison with an existing physics-based battery model in order to prove the increase of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信