{"title":"基于级联PWM变换器的电池储能系统容错控制","authors":"L. Maharjan, T. Yamagishi, H. Akagi, J. Asakura","doi":"10.1109/IPEMC.2009.5157519","DOIUrl":null,"url":null,"abstract":"This paper focuses on fault-tolerant control for a battery energy storage system based on a three-phase multilevel cascade PWM (pulse-width-modulation) converter with star configuration. It enables continuous operation and maintains SOC (state-of-charge) balancing of operating battery units even during the occurrence of a converter-cell or battery-unit failure. This enhances both system reliability and availability. A 200-V, 10-kW, 3.6-kWh laboratory system combining a three-phase cascade PWM converter with nine NiMH (Nickel-metal-hydride) battery units is designed, constructed, and tested to verify the validity and effectiveness of the proposed fault-tolerant control.","PeriodicalId":375971,"journal":{"name":"2009 IEEE 6th International Power Electronics and Motion Control Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Fault-tolerant control for a battery energy storage system based on a cascade PWM converter\",\"authors\":\"L. Maharjan, T. Yamagishi, H. Akagi, J. Asakura\",\"doi\":\"10.1109/IPEMC.2009.5157519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on fault-tolerant control for a battery energy storage system based on a three-phase multilevel cascade PWM (pulse-width-modulation) converter with star configuration. It enables continuous operation and maintains SOC (state-of-charge) balancing of operating battery units even during the occurrence of a converter-cell or battery-unit failure. This enhances both system reliability and availability. A 200-V, 10-kW, 3.6-kWh laboratory system combining a three-phase cascade PWM converter with nine NiMH (Nickel-metal-hydride) battery units is designed, constructed, and tested to verify the validity and effectiveness of the proposed fault-tolerant control.\",\"PeriodicalId\":375971,\"journal\":{\"name\":\"2009 IEEE 6th International Power Electronics and Motion Control Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 6th International Power Electronics and Motion Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPEMC.2009.5157519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 6th International Power Electronics and Motion Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPEMC.2009.5157519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fault-tolerant control for a battery energy storage system based on a cascade PWM converter
This paper focuses on fault-tolerant control for a battery energy storage system based on a three-phase multilevel cascade PWM (pulse-width-modulation) converter with star configuration. It enables continuous operation and maintains SOC (state-of-charge) balancing of operating battery units even during the occurrence of a converter-cell or battery-unit failure. This enhances both system reliability and availability. A 200-V, 10-kW, 3.6-kWh laboratory system combining a three-phase cascade PWM converter with nine NiMH (Nickel-metal-hydride) battery units is designed, constructed, and tested to verify the validity and effectiveness of the proposed fault-tolerant control.