使用分位数回归模型的网络流量稳健预测

W. Wu, Zhiwei Xu, Yu Wang
{"title":"使用分位数回归模型的网络流量稳健预测","authors":"W. Wu, Zhiwei Xu, Yu Wang","doi":"10.1109/IRI.2006.252416","DOIUrl":null,"url":null,"abstract":"Reliable network traffic prediction is essential for efficient resource management schemes. Based on the quantile regression, we propose a robust prediction procedure which is resistent to outliers. For long-term predictions, the predicting intervals have a coverage probability that is very close to the pre-assigned nominal level. The detailed distributional information of the estimated quantities can be efficiently characterized by using different quantiles. The performance of the prediction is tested on a large telecommunication network traffic data. The results indicate that the proposed quantile regression provide relative accurate prediction and is not sensitive to outliers","PeriodicalId":402255,"journal":{"name":"2006 IEEE International Conference on Information Reuse & Integration","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Robust prediction of network traffic using Quantile Regression Models\",\"authors\":\"W. Wu, Zhiwei Xu, Yu Wang\",\"doi\":\"10.1109/IRI.2006.252416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable network traffic prediction is essential for efficient resource management schemes. Based on the quantile regression, we propose a robust prediction procedure which is resistent to outliers. For long-term predictions, the predicting intervals have a coverage probability that is very close to the pre-assigned nominal level. The detailed distributional information of the estimated quantities can be efficiently characterized by using different quantiles. The performance of the prediction is tested on a large telecommunication network traffic data. The results indicate that the proposed quantile regression provide relative accurate prediction and is not sensitive to outliers\",\"PeriodicalId\":402255,\"journal\":{\"name\":\"2006 IEEE International Conference on Information Reuse & Integration\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Information Reuse & Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2006.252416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Information Reuse & Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2006.252416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

可靠的网络流量预测对于有效的资源管理方案至关重要。在分位数回归的基础上,提出了一种抗异常值的鲁棒预测方法。对于长期预测,预测区间的覆盖概率非常接近预先指定的标称水平。使用不同的分位数可以有效地表征估计量的详细分布信息。在大型通信网流量数据上对预测的性能进行了测试。结果表明,所提出的分位数回归能够提供相对准确的预测,并且对异常值不敏感
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust prediction of network traffic using Quantile Regression Models
Reliable network traffic prediction is essential for efficient resource management schemes. Based on the quantile regression, we propose a robust prediction procedure which is resistent to outliers. For long-term predictions, the predicting intervals have a coverage probability that is very close to the pre-assigned nominal level. The detailed distributional information of the estimated quantities can be efficiently characterized by using different quantiles. The performance of the prediction is tested on a large telecommunication network traffic data. The results indicate that the proposed quantile regression provide relative accurate prediction and is not sensitive to outliers
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信