{"title":"少即是多:DNSSEC的密码套件协商","authors":"A. Herzberg, Haya Shulman, B. Crispo","doi":"10.1145/2664243.2664283","DOIUrl":null,"url":null,"abstract":"We propose a transport layer cipher-suite negotiation mechanism for DNSSEC standard, allowing name-servers to send responses containing only the keys and signatures that correspond to the cipher-suite option negotiated with the resolver, rather than sending all the signatures and keys (as is done currently). As we show, a lack of cipher-suite negotiation, is one of the factors impeding deployment of DNSSEC, and also results in adoption of weak ciphers. Indeed, the vast majority of domains rely on RSA 1024-bit cryptography, which is already considered insecure. Furthermore, domains, that want better security, have to support a number of cryptographic ciphers. As a result, the DNSSEC responses are large and often fragmented, harming the DNS functionality, and causing inefficiency and vulnerabilities. A cipher-suite negotiation mechanism reduces responses' sizes, and hence solves the interoperability problems with DNSSEC-signed responses, and prevents reflection and cache poisoning attacks.","PeriodicalId":104443,"journal":{"name":"Proceedings of the 30th Annual Computer Security Applications Conference","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Less is more: cipher-suite negotiation for DNSSEC\",\"authors\":\"A. Herzberg, Haya Shulman, B. Crispo\",\"doi\":\"10.1145/2664243.2664283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a transport layer cipher-suite negotiation mechanism for DNSSEC standard, allowing name-servers to send responses containing only the keys and signatures that correspond to the cipher-suite option negotiated with the resolver, rather than sending all the signatures and keys (as is done currently). As we show, a lack of cipher-suite negotiation, is one of the factors impeding deployment of DNSSEC, and also results in adoption of weak ciphers. Indeed, the vast majority of domains rely on RSA 1024-bit cryptography, which is already considered insecure. Furthermore, domains, that want better security, have to support a number of cryptographic ciphers. As a result, the DNSSEC responses are large and often fragmented, harming the DNS functionality, and causing inefficiency and vulnerabilities. A cipher-suite negotiation mechanism reduces responses' sizes, and hence solves the interoperability problems with DNSSEC-signed responses, and prevents reflection and cache poisoning attacks.\",\"PeriodicalId\":104443,\"journal\":{\"name\":\"Proceedings of the 30th Annual Computer Security Applications Conference\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th Annual Computer Security Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2664243.2664283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th Annual Computer Security Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2664243.2664283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We propose a transport layer cipher-suite negotiation mechanism for DNSSEC standard, allowing name-servers to send responses containing only the keys and signatures that correspond to the cipher-suite option negotiated with the resolver, rather than sending all the signatures and keys (as is done currently). As we show, a lack of cipher-suite negotiation, is one of the factors impeding deployment of DNSSEC, and also results in adoption of weak ciphers. Indeed, the vast majority of domains rely on RSA 1024-bit cryptography, which is already considered insecure. Furthermore, domains, that want better security, have to support a number of cryptographic ciphers. As a result, the DNSSEC responses are large and often fragmented, harming the DNS functionality, and causing inefficiency and vulnerabilities. A cipher-suite negotiation mechanism reduces responses' sizes, and hence solves the interoperability problems with DNSSEC-signed responses, and prevents reflection and cache poisoning attacks.