测试流图的可简化性

R. Tarjan
{"title":"测试流图的可简化性","authors":"R. Tarjan","doi":"10.1145/800125.804040","DOIUrl":null,"url":null,"abstract":"Many problems in program optimization have been solved by applying a technique called interval analysis to the flow graph of the program. A flow graph which is susceptible to this type of analysis is called reducible. This paper describes an algorithm for testing whether a flow graph is reducible. The algorithm uses depth-first search to reveal the structure of the flow graph and a good method for computing disjoint set unions to determine reducibility from the search information. When the algorithm is implemented on a random access computer, it requires O(E log* E) time to analyze a graph with E edges, where log* x = min{i/logix≤1}. The time bound compares favorably with the O(E log E) bound of a previously known algorithm.","PeriodicalId":242946,"journal":{"name":"Proceedings of the fifth annual ACM symposium on Theory of computing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1973-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"251","resultStr":"{\"title\":\"Testing flow graph reducibility\",\"authors\":\"R. Tarjan\",\"doi\":\"10.1145/800125.804040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many problems in program optimization have been solved by applying a technique called interval analysis to the flow graph of the program. A flow graph which is susceptible to this type of analysis is called reducible. This paper describes an algorithm for testing whether a flow graph is reducible. The algorithm uses depth-first search to reveal the structure of the flow graph and a good method for computing disjoint set unions to determine reducibility from the search information. When the algorithm is implemented on a random access computer, it requires O(E log* E) time to analyze a graph with E edges, where log* x = min{i/logix≤1}. The time bound compares favorably with the O(E log E) bound of a previously known algorithm.\",\"PeriodicalId\":242946,\"journal\":{\"name\":\"Proceedings of the fifth annual ACM symposium on Theory of computing\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1973-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"251\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the fifth annual ACM symposium on Theory of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/800125.804040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the fifth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/800125.804040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 251

摘要

应用区间分析技术对程序流程图进行分析,解决了程序优化中的许多问题。易于进行这种分析的流图称为可约流图。本文描述了一种检验流图是否可约的算法。该算法使用深度优先搜索来揭示流图的结构,并使用一种计算不相交集并的好方法来从搜索信息中确定可约性。当算法在随机存取计算机上实现时,分析一个有E条边的图需要O(E log* E)时间,其中log* x = min{i/logix≤1}。与以前已知的算法的O(E log E)界相比,该时间界限更为有利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing flow graph reducibility
Many problems in program optimization have been solved by applying a technique called interval analysis to the flow graph of the program. A flow graph which is susceptible to this type of analysis is called reducible. This paper describes an algorithm for testing whether a flow graph is reducible. The algorithm uses depth-first search to reveal the structure of the flow graph and a good method for computing disjoint set unions to determine reducibility from the search information. When the algorithm is implemented on a random access computer, it requires O(E log* E) time to analyze a graph with E edges, where log* x = min{i/logix≤1}. The time bound compares favorably with the O(E log E) bound of a previously known algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信