{"title":"MIMO信道的时不变无速率码","authors":"M. Shanechi, U. Erez, Kevin P. Boyle, G. Wornell","doi":"10.1109/ISIT.2008.4595390","DOIUrl":null,"url":null,"abstract":"Two time-invariant rateless code constructions are developed for efficient communication over multi-input multi- output (MIMO) Gaussian channels. Both architectures employ layering, dithering, and repetition as key ingredients, and convert the MIMO channel into a scalar channel to which classical Gaussian base codes can be applied. Both constructions are convolutionally structured - one is based on faster-than-Nyquist (ftN) signaling, while the other on a diagonal layering (DL) structure. Moreover, both employ successive cancellation decoding. We show that ftN rateless codes are asymptotically capacity achieving at any signal-to-noise ratio (SNR) and induce a time-invariant scalar channel. We also show that DL codes are capacity achieving at any SNR, and induce a particular time-varying scalar channel to which standard LDPC base codes can be applied without significantly sacrificing performance.","PeriodicalId":194674,"journal":{"name":"2008 IEEE International Symposium on Information Theory","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Time-invariant rateless codes for MIMO channels\",\"authors\":\"M. Shanechi, U. Erez, Kevin P. Boyle, G. Wornell\",\"doi\":\"10.1109/ISIT.2008.4595390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two time-invariant rateless code constructions are developed for efficient communication over multi-input multi- output (MIMO) Gaussian channels. Both architectures employ layering, dithering, and repetition as key ingredients, and convert the MIMO channel into a scalar channel to which classical Gaussian base codes can be applied. Both constructions are convolutionally structured - one is based on faster-than-Nyquist (ftN) signaling, while the other on a diagonal layering (DL) structure. Moreover, both employ successive cancellation decoding. We show that ftN rateless codes are asymptotically capacity achieving at any signal-to-noise ratio (SNR) and induce a time-invariant scalar channel. We also show that DL codes are capacity achieving at any SNR, and induce a particular time-varying scalar channel to which standard LDPC base codes can be applied without significantly sacrificing performance.\",\"PeriodicalId\":194674,\"journal\":{\"name\":\"2008 IEEE International Symposium on Information Theory\",\"volume\":\"177 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2008.4595390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2008.4595390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Two time-invariant rateless code constructions are developed for efficient communication over multi-input multi- output (MIMO) Gaussian channels. Both architectures employ layering, dithering, and repetition as key ingredients, and convert the MIMO channel into a scalar channel to which classical Gaussian base codes can be applied. Both constructions are convolutionally structured - one is based on faster-than-Nyquist (ftN) signaling, while the other on a diagonal layering (DL) structure. Moreover, both employ successive cancellation decoding. We show that ftN rateless codes are asymptotically capacity achieving at any signal-to-noise ratio (SNR) and induce a time-invariant scalar channel. We also show that DL codes are capacity achieving at any SNR, and induce a particular time-varying scalar channel to which standard LDPC base codes can be applied without significantly sacrificing performance.