{"title":"一种新的瞬时电流控制器,用于三相降压升压和降压变换器与PFC操作","authors":"Y. Nishida, A. Maeda, H. Tomita","doi":"10.1109/APEC.1995.469044","DOIUrl":null,"url":null,"abstract":"A new instantaneous-current controller for three-phase buck-boost and buck power converters with power factor correction (PFC) operation is proposed. Based on the idea of a three-phase equivalent pulse-current-source with delta-form, the controller simply generates three-phase switching-patterns for PFC operation. Additionally, the controller employs a pulse-space-modulation technique to compensate modulation errors caused by ripples in the DC-inductor current and to reduce the size of the inductor. The modulation technique is further extended to realize a discontinuous-switching scheme to reduce switching losses. The paper describes the theory and the implementations. To show the validity of the theory, experimental waveforms, spectra and static characteristics, obtained by a 3 kW setup are introduced. Finally, conclusions are drawn and abilities and problems for future study are described.<<ETX>>","PeriodicalId":335367,"journal":{"name":"Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition - APEC'95","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A new instantaneous-current controller for three-phase buck-boost and buck converters with PFC operation\",\"authors\":\"Y. Nishida, A. Maeda, H. Tomita\",\"doi\":\"10.1109/APEC.1995.469044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new instantaneous-current controller for three-phase buck-boost and buck power converters with power factor correction (PFC) operation is proposed. Based on the idea of a three-phase equivalent pulse-current-source with delta-form, the controller simply generates three-phase switching-patterns for PFC operation. Additionally, the controller employs a pulse-space-modulation technique to compensate modulation errors caused by ripples in the DC-inductor current and to reduce the size of the inductor. The modulation technique is further extended to realize a discontinuous-switching scheme to reduce switching losses. The paper describes the theory and the implementations. To show the validity of the theory, experimental waveforms, spectra and static characteristics, obtained by a 3 kW setup are introduced. Finally, conclusions are drawn and abilities and problems for future study are described.<<ETX>>\",\"PeriodicalId\":335367,\"journal\":{\"name\":\"Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition - APEC'95\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition - APEC'95\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APEC.1995.469044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition - APEC'95","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.1995.469044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new instantaneous-current controller for three-phase buck-boost and buck converters with PFC operation
A new instantaneous-current controller for three-phase buck-boost and buck power converters with power factor correction (PFC) operation is proposed. Based on the idea of a three-phase equivalent pulse-current-source with delta-form, the controller simply generates three-phase switching-patterns for PFC operation. Additionally, the controller employs a pulse-space-modulation technique to compensate modulation errors caused by ripples in the DC-inductor current and to reduce the size of the inductor. The modulation technique is further extended to realize a discontinuous-switching scheme to reduce switching losses. The paper describes the theory and the implementations. To show the validity of the theory, experimental waveforms, spectra and static characteristics, obtained by a 3 kW setup are introduced. Finally, conclusions are drawn and abilities and problems for future study are described.<>