利用深度学习识别企业网络中个人移动设备的安全风险

Lanier A Watkins, Yue Yu, Sifan Li, W. H. Robinson, A. Rubin
{"title":"利用深度学习识别企业网络中个人移动设备的安全风险","authors":"Lanier A Watkins, Yue Yu, Sifan Li, W. H. Robinson, A. Rubin","doi":"10.1109/UEMCON51285.2020.9298079","DOIUrl":null,"url":null,"abstract":"In bring-your-own-device (BYOD) and guest wireless networks, the use of mobile devices within industry, government, and academic enterprise networks represents a difficult security challenge for system administrators. Devices not owned by the enterprise can pose additional risk. Our prior research demonstrated a dynamic anomaly detection method that used side-channel analysis of ping responses to infer whether devices were compromised. Initial results showed promise for a limited dataset. Our extension of this prior work now uses deep learning, twice as many features, and analyzes ten times more malware. Additional experiments demonstrate that our deep learning model generalizes to the detection of unseen threats across multiple families of malware.","PeriodicalId":433609,"journal":{"name":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Deep Learning to Identify Security Risks of Personal Mobile Devices in Enterprise Networks\",\"authors\":\"Lanier A Watkins, Yue Yu, Sifan Li, W. H. Robinson, A. Rubin\",\"doi\":\"10.1109/UEMCON51285.2020.9298079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In bring-your-own-device (BYOD) and guest wireless networks, the use of mobile devices within industry, government, and academic enterprise networks represents a difficult security challenge for system administrators. Devices not owned by the enterprise can pose additional risk. Our prior research demonstrated a dynamic anomaly detection method that used side-channel analysis of ping responses to infer whether devices were compromised. Initial results showed promise for a limited dataset. Our extension of this prior work now uses deep learning, twice as many features, and analyzes ten times more malware. Additional experiments demonstrate that our deep learning model generalizes to the detection of unseen threats across multiple families of malware.\",\"PeriodicalId\":433609,\"journal\":{\"name\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON51285.2020.9298079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON51285.2020.9298079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在自带设备(BYOD)和访客无线网络中,在工业、政府和学术企业网络中使用移动设备对系统管理员来说是一个困难的安全挑战。不属于企业所有的设备可能会带来额外的风险。我们之前的研究展示了一种动态异常检测方法,该方法使用ping响应的侧信道分析来推断设备是否受到损害。最初的结果表明,在有限的数据集上有希望。我们对先前工作的扩展现在使用深度学习,两倍的特征,并分析十倍的恶意软件。另外的实验表明,我们的深度学习模型可以推广到检测多个恶意软件家族中看不见的威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Deep Learning to Identify Security Risks of Personal Mobile Devices in Enterprise Networks
In bring-your-own-device (BYOD) and guest wireless networks, the use of mobile devices within industry, government, and academic enterprise networks represents a difficult security challenge for system administrators. Devices not owned by the enterprise can pose additional risk. Our prior research demonstrated a dynamic anomaly detection method that used side-channel analysis of ping responses to infer whether devices were compromised. Initial results showed promise for a limited dataset. Our extension of this prior work now uses deep learning, twice as many features, and analyzes ten times more malware. Additional experiments demonstrate that our deep learning model generalizes to the detection of unseen threats across multiple families of malware.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信