合成孔径雷达层析成像稀疏重建自动机

N. Ge, Xiaoxiang Zhu
{"title":"合成孔径雷达层析成像稀疏重建自动机","authors":"N. Ge, Xiaoxiang Zhu","doi":"10.1109/EURAD.2015.7346228","DOIUrl":null,"url":null,"abstract":"In this paper, we report our findings on automating the sparse reconstruction process in tomography with synthetic aperture radar. Two hyperparameter-free approaches are introduced into the framework of SL1MMER (Scale-down by L1 norm Minimization, Model selection, and Estimation Reconstruction). By means of numerical simulations, we evaluate their performance regarding mean and standard deviation of elevation estimates, as well as detection rate. Preliminary results with real data are also provided.","PeriodicalId":376019,"journal":{"name":"2015 European Radar Conference (EuRAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse reconstruction automaton for synthetic aperture radar tomography\",\"authors\":\"N. Ge, Xiaoxiang Zhu\",\"doi\":\"10.1109/EURAD.2015.7346228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we report our findings on automating the sparse reconstruction process in tomography with synthetic aperture radar. Two hyperparameter-free approaches are introduced into the framework of SL1MMER (Scale-down by L1 norm Minimization, Model selection, and Estimation Reconstruction). By means of numerical simulations, we evaluate their performance regarding mean and standard deviation of elevation estimates, as well as detection rate. Preliminary results with real data are also provided.\",\"PeriodicalId\":376019,\"journal\":{\"name\":\"2015 European Radar Conference (EuRAD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 European Radar Conference (EuRAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EURAD.2015.7346228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Radar Conference (EuRAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURAD.2015.7346228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了合成孔径雷达在层析成像稀疏重建过程中的自动化研究成果。在SL1MMER框架中引入了两种无超参数的方法(L1范数最小化、模型选择和估计重建)。通过数值模拟,我们从高程估计的均值和标准差以及检测率方面评价了它们的性能。并给出了实际数据的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse reconstruction automaton for synthetic aperture radar tomography
In this paper, we report our findings on automating the sparse reconstruction process in tomography with synthetic aperture radar. Two hyperparameter-free approaches are introduced into the framework of SL1MMER (Scale-down by L1 norm Minimization, Model selection, and Estimation Reconstruction). By means of numerical simulations, we evaluate their performance regarding mean and standard deviation of elevation estimates, as well as detection rate. Preliminary results with real data are also provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信