基于遗传算法的人工神经网络全并行FPGA实现

Etienne Dumesnil, Philippe-Olivier Beaulieu, M. Boukadoum
{"title":"基于遗传算法的人工神经网络全并行FPGA实现","authors":"Etienne Dumesnil, Philippe-Olivier Beaulieu, M. Boukadoum","doi":"10.1109/NEWCAS.2018.8585580","DOIUrl":null,"url":null,"abstract":"An artificial neural network (ANN)-based method for radio-frequency analog circuit synthesis is implemented on a field-programmable gate array (FPGA). The ANN has four hidden layers, with fifteen neurons per hidden layer, and its hyper parameters are tuned by an auxiliary genetic algorithm (GA) that uses deterministic tournament for generation renewal with minimal hardware. The presented work actualizes the inherently parallel nature of ANN processes, doing away with optimizing vector manipulations by conventional serial hardware. Instead, the effort is put on minimizing the resources used by each neuron and maximizing their collective processing power. Moreover, the GA algorithm for hyper parameter tuning is implemented as a parallel process as well. The proposed architecture is validated on a concrete problem, showing its ability to learn the solution to a problem and generalize it to new instances.","PeriodicalId":112526,"journal":{"name":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","volume":"50 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fully parallel FPGA Implementation of an Artificial Neural Network Tuned by Genetic Algorithm\",\"authors\":\"Etienne Dumesnil, Philippe-Olivier Beaulieu, M. Boukadoum\",\"doi\":\"10.1109/NEWCAS.2018.8585580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An artificial neural network (ANN)-based method for radio-frequency analog circuit synthesis is implemented on a field-programmable gate array (FPGA). The ANN has four hidden layers, with fifteen neurons per hidden layer, and its hyper parameters are tuned by an auxiliary genetic algorithm (GA) that uses deterministic tournament for generation renewal with minimal hardware. The presented work actualizes the inherently parallel nature of ANN processes, doing away with optimizing vector manipulations by conventional serial hardware. Instead, the effort is put on minimizing the resources used by each neuron and maximizing their collective processing power. Moreover, the GA algorithm for hyper parameter tuning is implemented as a parallel process as well. The proposed architecture is validated on a concrete problem, showing its ability to learn the solution to a problem and generalize it to new instances.\",\"PeriodicalId\":112526,\"journal\":{\"name\":\"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"volume\":\"50 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2018.8585580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 16th IEEE International New Circuits and Systems Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2018.8585580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在现场可编程门阵列(FPGA)上实现了一种基于人工神经网络的射频模拟电路合成方法。该人工神经网络有四个隐藏层,每个隐藏层有15个神经元,其超参数通过辅助遗传算法(GA)进行调整,该算法使用最小的硬件使用确定性竞赛进行代更新。所提出的工作实现了人工神经网络过程固有的并行性质,消除了传统串行硬件对矢量操作的优化。取而代之的是,努力将每个神经元使用的资源最小化,并最大化它们的集体处理能力。此外,超参数整定的遗传算法也是作为并行过程来实现的。在一个具体问题上验证了所提出的体系结构,显示了其学习问题解决方案并将其推广到新实例的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fully parallel FPGA Implementation of an Artificial Neural Network Tuned by Genetic Algorithm
An artificial neural network (ANN)-based method for radio-frequency analog circuit synthesis is implemented on a field-programmable gate array (FPGA). The ANN has four hidden layers, with fifteen neurons per hidden layer, and its hyper parameters are tuned by an auxiliary genetic algorithm (GA) that uses deterministic tournament for generation renewal with minimal hardware. The presented work actualizes the inherently parallel nature of ANN processes, doing away with optimizing vector manipulations by conventional serial hardware. Instead, the effort is put on minimizing the resources used by each neuron and maximizing their collective processing power. Moreover, the GA algorithm for hyper parameter tuning is implemented as a parallel process as well. The proposed architecture is validated on a concrete problem, showing its ability to learn the solution to a problem and generalize it to new instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信