协同人机交互的跟踪框架

E. Polat, M. Yeasin, Rajeev Sharma
{"title":"协同人机交互的跟踪框架","authors":"E. Polat, M. Yeasin, Rajeev Sharma","doi":"10.1109/ICMI.2002.1166964","DOIUrl":null,"url":null,"abstract":"The ability to track many people and their body parts (i.e., face and hands) in a complex environment is crucial for designing collaborative natural human computer interaction (HCI). A challenging issue in tracking body parts is the data association uncertainty while assigning measurements to the proper tracks in the case of occlusion and close interaction of body parts of different people. This paper describes a framework for tracking body parts of people in 2D/3D using a multiple hypothesis tracking (MHT) algorithm. A path coherence function has been incorporated along with MHT to reduce the negative effects of closely spaced measurements that produce unconvincing tracks and unnecessary computations. The performance of the framework has been validated using experiments on a real sequence of images.","PeriodicalId":208377,"journal":{"name":"Proceedings. Fourth IEEE International Conference on Multimodal Interfaces","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A tracking framework for collaborative human computer interaction\",\"authors\":\"E. Polat, M. Yeasin, Rajeev Sharma\",\"doi\":\"10.1109/ICMI.2002.1166964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ability to track many people and their body parts (i.e., face and hands) in a complex environment is crucial for designing collaborative natural human computer interaction (HCI). A challenging issue in tracking body parts is the data association uncertainty while assigning measurements to the proper tracks in the case of occlusion and close interaction of body parts of different people. This paper describes a framework for tracking body parts of people in 2D/3D using a multiple hypothesis tracking (MHT) algorithm. A path coherence function has been incorporated along with MHT to reduce the negative effects of closely spaced measurements that produce unconvincing tracks and unnecessary computations. The performance of the framework has been validated using experiments on a real sequence of images.\",\"PeriodicalId\":208377,\"journal\":{\"name\":\"Proceedings. Fourth IEEE International Conference on Multimodal Interfaces\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Fourth IEEE International Conference on Multimodal Interfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMI.2002.1166964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Fourth IEEE International Conference on Multimodal Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMI.2002.1166964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在复杂环境中跟踪许多人和他们的身体部位(即脸和手)的能力对于设计协作式自然人机交互(HCI)至关重要。在身体部位的跟踪中,一个具有挑战性的问题是在不同人的身体部位遮挡和密切互动的情况下,将测量值分配到适当的轨迹时,数据关联的不确定性。本文描述了一个使用多假设跟踪(MHT)算法在2D/3D中跟踪人体部位的框架。路径相干函数已与MHT一起纳入,以减少产生不令人信服的轨迹和不必要的计算的紧密间隔测量的负面影响。通过对真实图像序列的实验验证了该框架的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A tracking framework for collaborative human computer interaction
The ability to track many people and their body parts (i.e., face and hands) in a complex environment is crucial for designing collaborative natural human computer interaction (HCI). A challenging issue in tracking body parts is the data association uncertainty while assigning measurements to the proper tracks in the case of occlusion and close interaction of body parts of different people. This paper describes a framework for tracking body parts of people in 2D/3D using a multiple hypothesis tracking (MHT) algorithm. A path coherence function has been incorporated along with MHT to reduce the negative effects of closely spaced measurements that produce unconvincing tracks and unnecessary computations. The performance of the framework has been validated using experiments on a real sequence of images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信