{"title":"基于datalog的图形数据库的高效溯源查询","authors":"Yann Ramusat, S. Maniu, P. Senellart","doi":"10.1145/3534540.3534689","DOIUrl":null,"url":null,"abstract":"We establish a translation between a formalism for dynamic programming over hypergraphs and the computation of semiring-based provenance for Datalog programs. The benefit of this translation is a new method for computing the provenance of Datalog programs for specific classes of semirings, which we apply to provenance-aware querying of graph databases. Theoretical results and practical optimizations lead to an efficient implementation using Soufflé, a state-of-the-art Datalog interpreter. Experimental results on real-world data suggest this approach to be efficient in practical contexts, competing with dedicated solutions for graphs.","PeriodicalId":309669,"journal":{"name":"Proceedings of the 5th ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient provenance-aware querying of graph databases with datalog\",\"authors\":\"Yann Ramusat, S. Maniu, P. Senellart\",\"doi\":\"10.1145/3534540.3534689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish a translation between a formalism for dynamic programming over hypergraphs and the computation of semiring-based provenance for Datalog programs. The benefit of this translation is a new method for computing the provenance of Datalog programs for specific classes of semirings, which we apply to provenance-aware querying of graph databases. Theoretical results and practical optimizations lead to an efficient implementation using Soufflé, a state-of-the-art Datalog interpreter. Experimental results on real-world data suggest this approach to be efficient in practical contexts, competing with dedicated solutions for graphs.\",\"PeriodicalId\":309669,\"journal\":{\"name\":\"Proceedings of the 5th ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3534540.3534689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM SIGMOD Joint International Workshop on Graph Data Management Experiences & Systems (GRADES) and Network Data Analytics (NDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3534540.3534689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient provenance-aware querying of graph databases with datalog
We establish a translation between a formalism for dynamic programming over hypergraphs and the computation of semiring-based provenance for Datalog programs. The benefit of this translation is a new method for computing the provenance of Datalog programs for specific classes of semirings, which we apply to provenance-aware querying of graph databases. Theoretical results and practical optimizations lead to an efficient implementation using Soufflé, a state-of-the-art Datalog interpreter. Experimental results on real-world data suggest this approach to be efficient in practical contexts, competing with dedicated solutions for graphs.