集成神经网络学习过程中采样方法的分析

M. Lopez, P. Melin
{"title":"集成神经网络学习过程中采样方法的分析","authors":"M. Lopez, P. Melin","doi":"10.1109/NAFIPS.2007.383909","DOIUrl":null,"url":null,"abstract":"When developing learning algorithms for ensemble neural networks it is of fundamental importance to use a sampling method. In this paper a comparative analysis is made, between a sampling data method based on the mean square error for the training of ensemble neural networks and cross validation sampling method.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of sampling methods in the learning process of ensemble neural networks\",\"authors\":\"M. Lopez, P. Melin\",\"doi\":\"10.1109/NAFIPS.2007.383909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When developing learning algorithms for ensemble neural networks it is of fundamental importance to use a sampling method. In this paper a comparative analysis is made, between a sampling data method based on the mean square error for the training of ensemble neural networks and cross validation sampling method.\",\"PeriodicalId\":292853,\"journal\":{\"name\":\"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2007.383909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在开发集成神经网络的学习算法时,使用采样方法是至关重要的。本文比较分析了基于均方误差的集合神经网络采样方法和交叉验证采样方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of sampling methods in the learning process of ensemble neural networks
When developing learning algorithms for ensemble neural networks it is of fundamental importance to use a sampling method. In this paper a comparative analysis is made, between a sampling data method based on the mean square error for the training of ensemble neural networks and cross validation sampling method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信