{"title":"结合三维广义霍夫变换和三维活动外观模型的肾皮质定位","authors":"Chao Jin, Dehui Xiang, Xinjian Chen","doi":"10.1109/ISBI.2014.6868109","DOIUrl":null,"url":null,"abstract":"Automatic localization is one of important steps in medical image segmentation. In this paper, a model-based method for three-dimensional image localization is developed. Our method is based on a combination of 3D Generalized Hough Transform and 3D Active Appearance Models. It consists of two main parts: training and localization. The proposed method was tested on a clinical abdomen CT data set, including 27 contrast-enhanced volume data, in which 15 were chose as training data while the other 12 as testing data. The experimental results show that: (1) an overall cortex localization average distance is 12.58±3.26 voxels. (2) The proposed method is highly efficient, the running time is about only 35.70±3.62 seconds for each volume data.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Renal cortex localization by combining 3D Generalized Hough Transform and 3D Active Appearance Models\",\"authors\":\"Chao Jin, Dehui Xiang, Xinjian Chen\",\"doi\":\"10.1109/ISBI.2014.6868109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic localization is one of important steps in medical image segmentation. In this paper, a model-based method for three-dimensional image localization is developed. Our method is based on a combination of 3D Generalized Hough Transform and 3D Active Appearance Models. It consists of two main parts: training and localization. The proposed method was tested on a clinical abdomen CT data set, including 27 contrast-enhanced volume data, in which 15 were chose as training data while the other 12 as testing data. The experimental results show that: (1) an overall cortex localization average distance is 12.58±3.26 voxels. (2) The proposed method is highly efficient, the running time is about only 35.70±3.62 seconds for each volume data.\",\"PeriodicalId\":440405,\"journal\":{\"name\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2014.6868109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6868109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Renal cortex localization by combining 3D Generalized Hough Transform and 3D Active Appearance Models
Automatic localization is one of important steps in medical image segmentation. In this paper, a model-based method for three-dimensional image localization is developed. Our method is based on a combination of 3D Generalized Hough Transform and 3D Active Appearance Models. It consists of two main parts: training and localization. The proposed method was tested on a clinical abdomen CT data set, including 27 contrast-enhanced volume data, in which 15 were chose as training data while the other 12 as testing data. The experimental results show that: (1) an overall cortex localization average distance is 12.58±3.26 voxels. (2) The proposed method is highly efficient, the running time is about only 35.70±3.62 seconds for each volume data.