基于深度学习的折纸超表面全息图

Kangri Wang, Da Shuang Liao, Hao Wang
{"title":"基于深度学习的折纸超表面全息图","authors":"Kangri Wang, Da Shuang Liao, Hao Wang","doi":"10.1109/CSRSWTC56224.2022.10098390","DOIUrl":null,"url":null,"abstract":"An origami metasurface structure is designed for hologram imaging based on deep learning. The metasurface unit cell is folded to form an origami structure, which is a straightforward way to change metasurface shape. The transmission electromagnetic performance of the unit cell is steady while the angle of incident waves changes from -60 to 60 degrees. In this paper, the folded angle of 45 degree is chosen. Every four cells fold in different ways to form a supercell. The total amounts of supercells are $30\\times 30=900$. Next, deep learning is utilized to compute the compensation phases of 3600 elements for generating hologram imaging. These phases determine the rotation angles of the unit cells. A left-handed circular polarized (LHCP) wave transmits the hologram structure and subsequently generates an image with the shape of the letter J on the imaging plane. This is validated by the simulations in the commercial electromagnetic software CST.","PeriodicalId":198168,"journal":{"name":"2022 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Origami Metasurface Hologram Based on Deep Learning\",\"authors\":\"Kangri Wang, Da Shuang Liao, Hao Wang\",\"doi\":\"10.1109/CSRSWTC56224.2022.10098390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An origami metasurface structure is designed for hologram imaging based on deep learning. The metasurface unit cell is folded to form an origami structure, which is a straightforward way to change metasurface shape. The transmission electromagnetic performance of the unit cell is steady while the angle of incident waves changes from -60 to 60 degrees. In this paper, the folded angle of 45 degree is chosen. Every four cells fold in different ways to form a supercell. The total amounts of supercells are $30\\\\times 30=900$. Next, deep learning is utilized to compute the compensation phases of 3600 elements for generating hologram imaging. These phases determine the rotation angles of the unit cells. A left-handed circular polarized (LHCP) wave transmits the hologram structure and subsequently generates an image with the shape of the letter J on the imaging plane. This is validated by the simulations in the commercial electromagnetic software CST.\",\"PeriodicalId\":198168,\"journal\":{\"name\":\"2022 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSRSWTC56224.2022.10098390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSRSWTC56224.2022.10098390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设计了一种基于深度学习的全息成像折纸超表面结构。将超表面单元细胞折叠形成折纸结构,这是改变超表面形状的一种直接方法。当入射波的角度在-60 ~ 60度范围内变化时,单体电池的传输电磁性能稳定。本文选择45度的折叠角。每四个细胞以不同的方式折叠形成一个超级单体。超级细胞的总数量是30美元× 30=900美元。接下来,利用深度学习计算3600个元件的补偿相位,生成全息成像。这些相位决定了单元格的旋转角度。左旋圆偏振波(LHCP)透射全息图结构,随后在成像平面上产生字母J形状的图像。在商用电磁软件CST中进行了仿真验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Origami Metasurface Hologram Based on Deep Learning
An origami metasurface structure is designed for hologram imaging based on deep learning. The metasurface unit cell is folded to form an origami structure, which is a straightforward way to change metasurface shape. The transmission electromagnetic performance of the unit cell is steady while the angle of incident waves changes from -60 to 60 degrees. In this paper, the folded angle of 45 degree is chosen. Every four cells fold in different ways to form a supercell. The total amounts of supercells are $30\times 30=900$. Next, deep learning is utilized to compute the compensation phases of 3600 elements for generating hologram imaging. These phases determine the rotation angles of the unit cells. A left-handed circular polarized (LHCP) wave transmits the hologram structure and subsequently generates an image with the shape of the letter J on the imaging plane. This is validated by the simulations in the commercial electromagnetic software CST.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信