基于神经网络的汉语孤立词依赖说话人识别

Yonghao Chen, B. Yuan
{"title":"基于神经网络的汉语孤立词依赖说话人识别","authors":"Yonghao Chen, B. Yuan","doi":"10.1109/CICCAS.1991.184409","DOIUrl":null,"url":null,"abstract":"This paper describes a speaker-dependent, isolated Chinese word recognition system based on neural networks. An improved neural network is applied to the recognition of speaker-dependent isolated Chinese words. The improved neural network is composed of several BP (back-propagation) networks. The isolated Chinese word sets are partitioned into a group of subsets based on a priori phonological knowledge. One of the BP networks identifies the subset to which the input word belongs; the others recognize the words in the subset. The improved neural network has the following advantages over a single BP network: training time is reduced; higher recognition accuracy is obtained with less training samples; new words can be easily added by adding new subsets.<<ETX>>","PeriodicalId":119051,"journal":{"name":"China., 1991 International Conference on Circuits and Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Speaker-dependent recognition of isolated Chinese words based on neural networks\",\"authors\":\"Yonghao Chen, B. Yuan\",\"doi\":\"10.1109/CICCAS.1991.184409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a speaker-dependent, isolated Chinese word recognition system based on neural networks. An improved neural network is applied to the recognition of speaker-dependent isolated Chinese words. The improved neural network is composed of several BP (back-propagation) networks. The isolated Chinese word sets are partitioned into a group of subsets based on a priori phonological knowledge. One of the BP networks identifies the subset to which the input word belongs; the others recognize the words in the subset. The improved neural network has the following advantages over a single BP network: training time is reduced; higher recognition accuracy is obtained with less training samples; new words can be easily added by adding new subsets.<<ETX>>\",\"PeriodicalId\":119051,\"journal\":{\"name\":\"China., 1991 International Conference on Circuits and Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China., 1991 International Conference on Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICCAS.1991.184409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China., 1991 International Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICCAS.1991.184409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种基于神经网络的依赖于说话人的汉语孤立词识别系统。将一种改进的神经网络应用于依赖说话人的汉语孤立词的识别。改进后的神经网络由多个BP(反向传播)网络组成。基于先验的语音知识将孤立的汉语词集划分为一组子集。其中一个BP网络识别输入词所属的子集;其他的识别子集中的单词。与单一BP网络相比,改进后的神经网络具有以下优点:减少了训练时间;用较少的训练样本获得较高的识别精度;通过添加新的子集,可以很容易地添加新词
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speaker-dependent recognition of isolated Chinese words based on neural networks
This paper describes a speaker-dependent, isolated Chinese word recognition system based on neural networks. An improved neural network is applied to the recognition of speaker-dependent isolated Chinese words. The improved neural network is composed of several BP (back-propagation) networks. The isolated Chinese word sets are partitioned into a group of subsets based on a priori phonological knowledge. One of the BP networks identifies the subset to which the input word belongs; the others recognize the words in the subset. The improved neural network has the following advantages over a single BP network: training time is reduced; higher recognition accuracy is obtained with less training samples; new words can be easily added by adding new subsets.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信