一种用于AWGN和衰落信道的自适应符号去除的无速率编码器

K. Tu, Zhaoyang Zhang, Chuangmu Yao, Shaolei Chen
{"title":"一种用于AWGN和衰落信道的自适应符号去除的无速率编码器","authors":"K. Tu, Zhaoyang Zhang, Chuangmu Yao, Shaolei Chen","doi":"10.1109/WCSP.2013.6677260","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel symbols removal encoding (SRE) raptor code over binary additional white gaussian noise (BIAWGN) channel and fading channel. By calculating the theoretical logarithmic likelihood ratios (LLR) messages that each input symbol accumulates in the encoding process and removing those input symbols whose LLR messages are enough for successful decoding from the latter encoding process in the SRE scheme, the LLR messages from the channel can be allocated more properly among the input symbols and thus the SRE Raptor code can achieve better decoding performance than conventional Raptor code. By analyzing raptor code based on extrinsic information transfer charts (EXIT) under Gaussian approximation, we propose the method to calculate the theoretical LLR messages of each input symbol and design the proper threshold to remove the symbols. Finally the simulation results show that the SRE Raptor code can achieve better decoding performance obviously both over BIAWGN channel and fading channel compared with conventional raptor code and the equal degree encoding (EDE) Raptor code.","PeriodicalId":342639,"journal":{"name":"2013 International Conference on Wireless Communications and Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A rateless encoder with adaptive symbol removal for AWGN and fading channels\",\"authors\":\"K. Tu, Zhaoyang Zhang, Chuangmu Yao, Shaolei Chen\",\"doi\":\"10.1109/WCSP.2013.6677260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel symbols removal encoding (SRE) raptor code over binary additional white gaussian noise (BIAWGN) channel and fading channel. By calculating the theoretical logarithmic likelihood ratios (LLR) messages that each input symbol accumulates in the encoding process and removing those input symbols whose LLR messages are enough for successful decoding from the latter encoding process in the SRE scheme, the LLR messages from the channel can be allocated more properly among the input symbols and thus the SRE Raptor code can achieve better decoding performance than conventional Raptor code. By analyzing raptor code based on extrinsic information transfer charts (EXIT) under Gaussian approximation, we propose the method to calculate the theoretical LLR messages of each input symbol and design the proper threshold to remove the symbols. Finally the simulation results show that the SRE Raptor code can achieve better decoding performance obviously both over BIAWGN channel and fading channel compared with conventional raptor code and the equal degree encoding (EDE) Raptor code.\",\"PeriodicalId\":342639,\"journal\":{\"name\":\"2013 International Conference on Wireless Communications and Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Wireless Communications and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2013.6677260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Wireless Communications and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2013.6677260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种基于二进制附加高斯白噪声(BIAWGN)信道和衰落信道的符号去除编码猛禽码。通过计算每个输入符号在编码过程中积累的理论对数可能比(LLR)消息,并在SRE方案中去除那些LLR消息足以成功解码的输入符号,使信道的LLR消息更合理地分配到输入符号中,从而使SRE Raptor码获得比传统Raptor码更好的解码性能。通过分析高斯近似下基于外部信息传输图(EXIT)的猛禽编码,提出了计算每个输入符号的理论LLR消息的方法,并设计了适当的阈值来去除符号。仿真结果表明,与传统猛禽码和等度编码(EDE)猛禽码相比,SRE猛禽码在BIAWGN信道和衰落信道上都能取得更好的解码性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A rateless encoder with adaptive symbol removal for AWGN and fading channels
In this paper, we propose a novel symbols removal encoding (SRE) raptor code over binary additional white gaussian noise (BIAWGN) channel and fading channel. By calculating the theoretical logarithmic likelihood ratios (LLR) messages that each input symbol accumulates in the encoding process and removing those input symbols whose LLR messages are enough for successful decoding from the latter encoding process in the SRE scheme, the LLR messages from the channel can be allocated more properly among the input symbols and thus the SRE Raptor code can achieve better decoding performance than conventional Raptor code. By analyzing raptor code based on extrinsic information transfer charts (EXIT) under Gaussian approximation, we propose the method to calculate the theoretical LLR messages of each input symbol and design the proper threshold to remove the symbols. Finally the simulation results show that the SRE Raptor code can achieve better decoding performance obviously both over BIAWGN channel and fading channel compared with conventional raptor code and the equal degree encoding (EDE) Raptor code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信