高维空间数据库的分形维数与相似度搜索

Mehmet Malcok, Y. Aslandogan, Aydin Yesildirek
{"title":"高维空间数据库的分形维数与相似度搜索","authors":"Mehmet Malcok, Y. Aslandogan, Aydin Yesildirek","doi":"10.1109/IRI.2006.252444","DOIUrl":null,"url":null,"abstract":"In this paper, the relationship between the dimension of the address space and the intrinsic (\"fractal\") dimension of the data set is investigated. An estimate of a lower bound for the number of features needed in a similarity search is given and it is shown that this bound is a function of the intrinsic dimension of the data set. Our result indicates the \"deflation\" of the dimensionality curse in fractal data sets by showing the explicit relationship between the intrinsic dimension of the data set and the embedding dimension of the address space. More precisely, we show that the relationship between the intrinsic dimension and the embedded dimension is linear","PeriodicalId":402255,"journal":{"name":"2006 IEEE International Conference on Information Reuse & Integration","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Fractal Dimension and Similarity Search in High-Dimensional Spatial Databases\",\"authors\":\"Mehmet Malcok, Y. Aslandogan, Aydin Yesildirek\",\"doi\":\"10.1109/IRI.2006.252444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the relationship between the dimension of the address space and the intrinsic (\\\"fractal\\\") dimension of the data set is investigated. An estimate of a lower bound for the number of features needed in a similarity search is given and it is shown that this bound is a function of the intrinsic dimension of the data set. Our result indicates the \\\"deflation\\\" of the dimensionality curse in fractal data sets by showing the explicit relationship between the intrinsic dimension of the data set and the embedding dimension of the address space. More precisely, we show that the relationship between the intrinsic dimension and the embedded dimension is linear\",\"PeriodicalId\":402255,\"journal\":{\"name\":\"2006 IEEE International Conference on Information Reuse & Integration\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Information Reuse & Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2006.252444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Information Reuse & Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2006.252444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文研究了地址空间的维数与数据集的内在维数(“分形”)之间的关系。给出了相似性搜索所需特征数的下界估计,并证明了该下界是数据集内在维数的函数。我们的结果通过显示数据集的内在维数与地址空间的嵌入维数之间的显式关系,表明了分形数据集中维数诅咒的“通缩”。更准确地说,我们证明了内在维数和嵌入维数之间的关系是线性的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractal Dimension and Similarity Search in High-Dimensional Spatial Databases
In this paper, the relationship between the dimension of the address space and the intrinsic ("fractal") dimension of the data set is investigated. An estimate of a lower bound for the number of features needed in a similarity search is given and it is shown that this bound is a function of the intrinsic dimension of the data set. Our result indicates the "deflation" of the dimensionality curse in fractal data sets by showing the explicit relationship between the intrinsic dimension of the data set and the embedding dimension of the address space. More precisely, we show that the relationship between the intrinsic dimension and the embedded dimension is linear
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信