{"title":"基于视觉刺激占空比的稳态视觉诱发电位分类","authors":"H. Cecotti","doi":"10.1109/ISABEL.2010.5702921","DOIUrl":null,"url":null,"abstract":"The detection of Steady State Visual Evoked Potentials (SSVEP) in the electroencephalogram (EEG) allows creating non-invasive Brain-Computer Interface (BCI). To produce an SSVEP response, a visual stimulus must be presented to the user. This stimulus can be a light that flickers at a particular frequency. Classical SSVEP-BCIs consider a frequency for each BCI command. One problem for an SSVEP based BCI can be the number of simultaneous flickering stimuli. It is difficult to render many flashing boxes with as many frequencies as boxes, due to hardware constraint like the vertical refresh rate of a screen. As an alternative to the common paradigm that assigns one command to each frequency, we propose to classify different type of SSVEP responses based on the duty cycle of the flickering lights, the frequency being the same for evoking SSVEP responses. Three paradigms based on different duty cycles over six subjects are compared. The offline classification of the obtained SSVEP responses is performed with spatial filters combined with a Bayesian Linear Discriminant Analysis classifier. The results show that it is possible to efficiently discriminate SSVEP responses given by visual stimuli at the same frequency but with different duty cycles.","PeriodicalId":165367,"journal":{"name":"2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010)","volume":"514 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Classification of Steady-State Visual Evoked Potentials based on the visual stimuli duty cycle\",\"authors\":\"H. Cecotti\",\"doi\":\"10.1109/ISABEL.2010.5702921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of Steady State Visual Evoked Potentials (SSVEP) in the electroencephalogram (EEG) allows creating non-invasive Brain-Computer Interface (BCI). To produce an SSVEP response, a visual stimulus must be presented to the user. This stimulus can be a light that flickers at a particular frequency. Classical SSVEP-BCIs consider a frequency for each BCI command. One problem for an SSVEP based BCI can be the number of simultaneous flickering stimuli. It is difficult to render many flashing boxes with as many frequencies as boxes, due to hardware constraint like the vertical refresh rate of a screen. As an alternative to the common paradigm that assigns one command to each frequency, we propose to classify different type of SSVEP responses based on the duty cycle of the flickering lights, the frequency being the same for evoking SSVEP responses. Three paradigms based on different duty cycles over six subjects are compared. The offline classification of the obtained SSVEP responses is performed with spatial filters combined with a Bayesian Linear Discriminant Analysis classifier. The results show that it is possible to efficiently discriminate SSVEP responses given by visual stimuli at the same frequency but with different duty cycles.\",\"PeriodicalId\":165367,\"journal\":{\"name\":\"2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010)\",\"volume\":\"514 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISABEL.2010.5702921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISABEL.2010.5702921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of Steady-State Visual Evoked Potentials based on the visual stimuli duty cycle
The detection of Steady State Visual Evoked Potentials (SSVEP) in the electroencephalogram (EEG) allows creating non-invasive Brain-Computer Interface (BCI). To produce an SSVEP response, a visual stimulus must be presented to the user. This stimulus can be a light that flickers at a particular frequency. Classical SSVEP-BCIs consider a frequency for each BCI command. One problem for an SSVEP based BCI can be the number of simultaneous flickering stimuli. It is difficult to render many flashing boxes with as many frequencies as boxes, due to hardware constraint like the vertical refresh rate of a screen. As an alternative to the common paradigm that assigns one command to each frequency, we propose to classify different type of SSVEP responses based on the duty cycle of the flickering lights, the frequency being the same for evoking SSVEP responses. Three paradigms based on different duty cycles over six subjects are compared. The offline classification of the obtained SSVEP responses is performed with spatial filters combined with a Bayesian Linear Discriminant Analysis classifier. The results show that it is possible to efficiently discriminate SSVEP responses given by visual stimuli at the same frequency but with different duty cycles.