异构数据库中保护隐私关联规则挖掘隐写算法的性能调优

Mahmoud Hussein, A. El-Sisi, N. Ismail
{"title":"异构数据库中保护隐私关联规则挖掘隐写算法的性能调优","authors":"Mahmoud Hussein, A. El-Sisi, N. Ismail","doi":"10.1109/NTMS.2008.ECP.79","DOIUrl":null,"url":null,"abstract":"Privacy and security issues in data mining become an important property in any data mining system. A considerable research has focused on developing new data mining algorithms that incorporate privacy constraints. In this paper, we focus on privately mining association rules in vertically partitioned data where the problem has been reduced to privately computing Boolean scalar products. We propose a modification of steganography-based multiparty protocols for this problem. The proposed modification fine tune the performance to be faster in case of very large database, with acceptable level of reduction in privacy.","PeriodicalId":432307,"journal":{"name":"2008 New Technologies, Mobility and Security","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Tuning of Steganography Algorithm for Privacy Preserving Association Rule Mining in Heterogeneous Data Base\",\"authors\":\"Mahmoud Hussein, A. El-Sisi, N. Ismail\",\"doi\":\"10.1109/NTMS.2008.ECP.79\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Privacy and security issues in data mining become an important property in any data mining system. A considerable research has focused on developing new data mining algorithms that incorporate privacy constraints. In this paper, we focus on privately mining association rules in vertically partitioned data where the problem has been reduced to privately computing Boolean scalar products. We propose a modification of steganography-based multiparty protocols for this problem. The proposed modification fine tune the performance to be faster in case of very large database, with acceptable level of reduction in privacy.\",\"PeriodicalId\":432307,\"journal\":{\"name\":\"2008 New Technologies, Mobility and Security\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 New Technologies, Mobility and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NTMS.2008.ECP.79\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 New Technologies, Mobility and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTMS.2008.ECP.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数据挖掘中的隐私和安全问题成为任何数据挖掘系统的重要属性。大量的研究集中在开发包含隐私约束的新数据挖掘算法上。在本文中,我们关注的是在垂直分区数据中私下挖掘关联规则,其中的问题被简化为私下计算布尔标量积。针对这个问题,我们提出了一种基于隐写术的多方协议的修改。在数据库非常大的情况下,建议的修改微调了性能,使其更快,隐私降低的程度可以接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Tuning of Steganography Algorithm for Privacy Preserving Association Rule Mining in Heterogeneous Data Base
Privacy and security issues in data mining become an important property in any data mining system. A considerable research has focused on developing new data mining algorithms that incorporate privacy constraints. In this paper, we focus on privately mining association rules in vertically partitioned data where the problem has been reduced to privately computing Boolean scalar products. We propose a modification of steganography-based multiparty protocols for this problem. The proposed modification fine tune the performance to be faster in case of very large database, with acceptable level of reduction in privacy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信