日惹旱季校园室外热性能模拟

H. Widyasamratri, A. Kusumawanto, Fadhilla Tri Nugrahaini
{"title":"日惹旱季校园室外热性能模拟","authors":"H. Widyasamratri, A. Kusumawanto, Fadhilla Tri Nugrahaini","doi":"10.30659/JACEE.2.1.15-24","DOIUrl":null,"url":null,"abstract":"The outdoor thermal performance reflects the microclimate condition in any significant area. This study simulated the thermal performance with measured and modeled three meteorological parameters, air temperature (Ta), relative humidity (RH), and wind speed in the dry season tropical city. The research focused on thermal performance simulation and distribution, here, we were neglecting anthropogenic activities as the heat source. The result showed that there were different ranges between a measured and simulated value of Ta, RH, and wind speed. The highest Ta difference between measure and simulation occurred at 11 AM, which was 1.97⸰C. The highest difference of RH occurred at 13 PM (26.75%), and the highest different of wind speed was at 11 AM (0.37 m/s) respectively. The heat distribution in the focus area was influenced by the solar direction which impacted the ground and near-surface air temperature.  ","PeriodicalId":349112,"journal":{"name":"Journal of Advanced Civil and Environmental Engineering","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Outdoor thermal performance simulation in campus area during the dry season, Yogyakarta\",\"authors\":\"H. Widyasamratri, A. Kusumawanto, Fadhilla Tri Nugrahaini\",\"doi\":\"10.30659/JACEE.2.1.15-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The outdoor thermal performance reflects the microclimate condition in any significant area. This study simulated the thermal performance with measured and modeled three meteorological parameters, air temperature (Ta), relative humidity (RH), and wind speed in the dry season tropical city. The research focused on thermal performance simulation and distribution, here, we were neglecting anthropogenic activities as the heat source. The result showed that there were different ranges between a measured and simulated value of Ta, RH, and wind speed. The highest Ta difference between measure and simulation occurred at 11 AM, which was 1.97⸰C. The highest difference of RH occurred at 13 PM (26.75%), and the highest different of wind speed was at 11 AM (0.37 m/s) respectively. The heat distribution in the focus area was influenced by the solar direction which impacted the ground and near-surface air temperature.  \",\"PeriodicalId\":349112,\"journal\":{\"name\":\"Journal of Advanced Civil and Environmental Engineering\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Civil and Environmental Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30659/JACEE.2.1.15-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Civil and Environmental Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30659/JACEE.2.1.15-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

室外热性能反映了任何重要地区的小气候状况。利用实测和模拟的3个气象参数:气温(Ta)、相对湿度(RH)和风速,对热带干旱季节城市的热力性能进行了模拟。研究主要集中在热性能模拟和分布上,忽略了人为活动作为热源。结果表明,温度、相对湿度和风速的实测值与模拟值之间存在差异。测量值与模拟值之间的最大Ta差值在上午11点出现,为1.97°C。相对湿度和风速的最大差异分别出现在13 PM(26.75%)和11 AM (0.37 m/s)。焦点区域的热量分布受太阳方向的影响,从而影响地面和近地面的气温。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Outdoor thermal performance simulation in campus area during the dry season, Yogyakarta
The outdoor thermal performance reflects the microclimate condition in any significant area. This study simulated the thermal performance with measured and modeled three meteorological parameters, air temperature (Ta), relative humidity (RH), and wind speed in the dry season tropical city. The research focused on thermal performance simulation and distribution, here, we were neglecting anthropogenic activities as the heat source. The result showed that there were different ranges between a measured and simulated value of Ta, RH, and wind speed. The highest Ta difference between measure and simulation occurred at 11 AM, which was 1.97⸰C. The highest difference of RH occurred at 13 PM (26.75%), and the highest different of wind speed was at 11 AM (0.37 m/s) respectively. The heat distribution in the focus area was influenced by the solar direction which impacted the ground and near-surface air temperature.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信