一种新的粒子群优化算法

Wang Dongyun, Zeng Ping, Li Luowei, Wang Kai
{"title":"一种新的粒子群优化算法","authors":"Wang Dongyun, Zeng Ping, Li Luowei, Wang Kai","doi":"10.1109/ICSESS.2010.5552354","DOIUrl":null,"url":null,"abstract":"A novel particle swarm optimization (NPSO) algorithm with dynamically changing inertia weight based on fltness and iterations was presented for improving the performance of the Particle Swarm Optimization algorithm. The new algorithm was tested with three benchmark functions. The experimental results show that the swarm can escape from local optimum, and it also can speed up the convergence of particles to improve the performance.","PeriodicalId":264630,"journal":{"name":"2010 IEEE International Conference on Software Engineering and Service Sciences","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A novel particle swarm optimization algorithm\",\"authors\":\"Wang Dongyun, Zeng Ping, Li Luowei, Wang Kai\",\"doi\":\"10.1109/ICSESS.2010.5552354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel particle swarm optimization (NPSO) algorithm with dynamically changing inertia weight based on fltness and iterations was presented for improving the performance of the Particle Swarm Optimization algorithm. The new algorithm was tested with three benchmark functions. The experimental results show that the swarm can escape from local optimum, and it also can speed up the convergence of particles to improve the performance.\",\"PeriodicalId\":264630,\"journal\":{\"name\":\"2010 IEEE International Conference on Software Engineering and Service Sciences\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Software Engineering and Service Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2010.5552354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Software Engineering and Service Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2010.5552354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

为了提高粒子群优化算法的性能,提出了一种基于平滑度和迭代的惯性权值动态变化的粒子群优化算法。用三个基准函数对新算法进行了测试。实验结果表明,该算法不仅可以摆脱局部最优,而且可以加快粒子的收敛速度,从而提高算法性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel particle swarm optimization algorithm
A novel particle swarm optimization (NPSO) algorithm with dynamically changing inertia weight based on fltness and iterations was presented for improving the performance of the Particle Swarm Optimization algorithm. The new algorithm was tested with three benchmark functions. The experimental results show that the swarm can escape from local optimum, and it also can speed up the convergence of particles to improve the performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信