具有虚阿贝尔抛物子群的相对双曲群的马丁边界

Matthieu Dussaule, Ilya Gekhtman, V. Gerasimov, Leonid Potyagailo Lmjl, Lpp
{"title":"具有虚阿贝尔抛物子群的相对双曲群的马丁边界","authors":"Matthieu Dussaule, Ilya Gekhtman, V. Gerasimov, Leonid Potyagailo Lmjl, Lpp","doi":"10.4171/LEM/66-3/4-3","DOIUrl":null,"url":null,"abstract":"Given a probability measure on a finitely generated group, its Martin boundary is a way to compactify the group using the Green's function of the corresponding random walk. We give a complete topological characterization of the Martin boundary of finitely supported random walks on relatively hyperbolic groups with virtually abelian parabolic subgroups. In particular, in the case of nonuniform lattices in the real hyperbolic space H n , we show that the Martin boundary coincides with the CAT (0) boundary of the truncated space, and thus when n = 3, is homeomorphic to the Sierpinski carpet.","PeriodicalId":344085,"journal":{"name":"L’Enseignement Mathématique","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The Martin boundary of relatively hyperbolic groups with virtually abelian parabolic subgroups\",\"authors\":\"Matthieu Dussaule, Ilya Gekhtman, V. Gerasimov, Leonid Potyagailo Lmjl, Lpp\",\"doi\":\"10.4171/LEM/66-3/4-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a probability measure on a finitely generated group, its Martin boundary is a way to compactify the group using the Green's function of the corresponding random walk. We give a complete topological characterization of the Martin boundary of finitely supported random walks on relatively hyperbolic groups with virtually abelian parabolic subgroups. In particular, in the case of nonuniform lattices in the real hyperbolic space H n , we show that the Martin boundary coincides with the CAT (0) boundary of the truncated space, and thus when n = 3, is homeomorphic to the Sierpinski carpet.\",\"PeriodicalId\":344085,\"journal\":{\"name\":\"L’Enseignement Mathématique\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"L’Enseignement Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/LEM/66-3/4-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"L’Enseignement Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/LEM/66-3/4-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

给定有限生成群上的一个概率测度,它的马丁边界是使用相应随机漫步的格林函数来紧化群的一种方法。给出了具有虚阿贝尔抛物子群的相对双曲群上有限支持随机游动的Martin边界的完整拓扑刻画。特别地,对于实双曲空间H n中的非均匀格,我们证明了Martin边界与截断空间的CAT(0)边界重合,因此当n = 3时,Martin边界与Sierpinski地毯同纯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Martin boundary of relatively hyperbolic groups with virtually abelian parabolic subgroups
Given a probability measure on a finitely generated group, its Martin boundary is a way to compactify the group using the Green's function of the corresponding random walk. We give a complete topological characterization of the Martin boundary of finitely supported random walks on relatively hyperbolic groups with virtually abelian parabolic subgroups. In particular, in the case of nonuniform lattices in the real hyperbolic space H n , we show that the Martin boundary coincides with the CAT (0) boundary of the truncated space, and thus when n = 3, is homeomorphic to the Sierpinski carpet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信