基于预测的实时数据流QoS管理

Yuan Wei, V. Prasad, S. Son, J. Stankovic
{"title":"基于预测的实时数据流QoS管理","authors":"Yuan Wei, V. Prasad, S. Son, J. Stankovic","doi":"10.1109/RTSS.2006.34","DOIUrl":null,"url":null,"abstract":"With the emergence of large wired and wireless sensor networks, many real-time applications need to operate on continuous unbounded data streams. At the same time, many of these systems have inherent timing constraints. Providing deadline guarantees for queries over dynamic data streams is a challenging problem due to bursty data stream arrival rates and time-varying stream contents. In this paper, we propose a prediction-based quality-of-service (QoS) management scheme for periodic queries over dynamic data streams. Our QoS management scheme features novel query workload estimators, which predict the query workload using execution time profiling and input data sampling, and adjusts the query QoS levels based on online query execution time prediction. We implement our QoS management algorithm on a real-time data stream query system prototype called RTStream. Our experimental evaluation of the scheme shows that our query workload estimator performs very well even with workload fluctuations and our QoS management scheme yields better overall system utility than the existing approaches for QoS management","PeriodicalId":353932,"journal":{"name":"2006 27th IEEE International Real-Time Systems Symposium (RTSS'06)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Prediction-Based QoS Management for Real-Time Data Streams\",\"authors\":\"Yuan Wei, V. Prasad, S. Son, J. Stankovic\",\"doi\":\"10.1109/RTSS.2006.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the emergence of large wired and wireless sensor networks, many real-time applications need to operate on continuous unbounded data streams. At the same time, many of these systems have inherent timing constraints. Providing deadline guarantees for queries over dynamic data streams is a challenging problem due to bursty data stream arrival rates and time-varying stream contents. In this paper, we propose a prediction-based quality-of-service (QoS) management scheme for periodic queries over dynamic data streams. Our QoS management scheme features novel query workload estimators, which predict the query workload using execution time profiling and input data sampling, and adjusts the query QoS levels based on online query execution time prediction. We implement our QoS management algorithm on a real-time data stream query system prototype called RTStream. Our experimental evaluation of the scheme shows that our query workload estimator performs very well even with workload fluctuations and our QoS management scheme yields better overall system utility than the existing approaches for QoS management\",\"PeriodicalId\":353932,\"journal\":{\"name\":\"2006 27th IEEE International Real-Time Systems Symposium (RTSS'06)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 27th IEEE International Real-Time Systems Symposium (RTSS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSS.2006.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 27th IEEE International Real-Time Systems Symposium (RTSS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2006.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

随着大型有线和无线传感器网络的出现,许多实时应用需要在连续的无界数据流上运行。同时,许多这样的系统都有固有的时间限制。由于突发的数据流到达率和时变的流内容,为动态数据流的查询提供截止日期保证是一个具有挑战性的问题。针对动态数据流的周期性查询,提出了一种基于预测的服务质量(QoS)管理方案。我们的QoS管理方案具有新颖的查询工作负载估计器,它使用执行时间分析和输入数据采样来预测查询工作负载,并根据在线查询执行时间预测来调整查询QoS级别。我们在实时数据流查询系统原型RTStream上实现了QoS管理算法。我们对该方案的实验评估表明,我们的查询工作负载估计器即使在工作负载波动的情况下也能很好地执行,并且我们的QoS管理方案比现有的QoS管理方法产生更好的整体系统效用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction-Based QoS Management for Real-Time Data Streams
With the emergence of large wired and wireless sensor networks, many real-time applications need to operate on continuous unbounded data streams. At the same time, many of these systems have inherent timing constraints. Providing deadline guarantees for queries over dynamic data streams is a challenging problem due to bursty data stream arrival rates and time-varying stream contents. In this paper, we propose a prediction-based quality-of-service (QoS) management scheme for periodic queries over dynamic data streams. Our QoS management scheme features novel query workload estimators, which predict the query workload using execution time profiling and input data sampling, and adjusts the query QoS levels based on online query execution time prediction. We implement our QoS management algorithm on a real-time data stream query system prototype called RTStream. Our experimental evaluation of the scheme shows that our query workload estimator performs very well even with workload fluctuations and our QoS management scheme yields better overall system utility than the existing approaches for QoS management
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信