一种用于正参数估计的伽玛滤波器

F. Govaers, Hosam Alqaderi
{"title":"一种用于正参数估计的伽玛滤波器","authors":"F. Govaers, Hosam Alqaderi","doi":"10.1109/MFI49285.2020.9235265","DOIUrl":null,"url":null,"abstract":"In many data fusion applications, the parameter of interest only takes positive values. For example, it might be the goal to estimate a distance or to count instances of certain items. Optimal data fusion then should model the system state as a positive random variable, which has a probability density function that is restricted to the positive real axis. However, classical approaches based on normal densities fail here, in particular whenever the variance of the likelihood is rather large compared to the mean. In this paper, it is considered to model such random parameters with a Gamma distribution, since its support is positive and it is the maximum entropy distribution for such variables. For a Bayesian recursion, an approximative moment matching approach is proposed. An example within the framework of an autonomous simulation and further numerical considerations demonstrate the feasibility of the approach.","PeriodicalId":446154,"journal":{"name":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Gamma Filter for Positive Parameter Estimation\",\"authors\":\"F. Govaers, Hosam Alqaderi\",\"doi\":\"10.1109/MFI49285.2020.9235265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many data fusion applications, the parameter of interest only takes positive values. For example, it might be the goal to estimate a distance or to count instances of certain items. Optimal data fusion then should model the system state as a positive random variable, which has a probability density function that is restricted to the positive real axis. However, classical approaches based on normal densities fail here, in particular whenever the variance of the likelihood is rather large compared to the mean. In this paper, it is considered to model such random parameters with a Gamma distribution, since its support is positive and it is the maximum entropy distribution for such variables. For a Bayesian recursion, an approximative moment matching approach is proposed. An example within the framework of an autonomous simulation and further numerical considerations demonstrate the feasibility of the approach.\",\"PeriodicalId\":446154,\"journal\":{\"name\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MFI49285.2020.9235265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MFI49285.2020.9235265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在许多数据融合应用中,感兴趣的参数只能取正值。例如,目标可能是估计距离或计算某些项目的实例数。因此,最优的数据融合应该将系统状态建模为一个正随机变量,该随机变量具有一个限制在正实轴上的概率密度函数。然而,基于正态密度的经典方法在这里失败了,特别是当似然的方差与平均值相比相当大时。本文考虑用Gamma分布对这类随机参数建模,因为它的支持度是正的,并且它是这类变量的最大熵分布。对于贝叶斯递推,提出了一种近似矩匹配方法。在自主仿真框架内的一个例子和进一步的数值考虑证明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Gamma Filter for Positive Parameter Estimation
In many data fusion applications, the parameter of interest only takes positive values. For example, it might be the goal to estimate a distance or to count instances of certain items. Optimal data fusion then should model the system state as a positive random variable, which has a probability density function that is restricted to the positive real axis. However, classical approaches based on normal densities fail here, in particular whenever the variance of the likelihood is rather large compared to the mean. In this paper, it is considered to model such random parameters with a Gamma distribution, since its support is positive and it is the maximum entropy distribution for such variables. For a Bayesian recursion, an approximative moment matching approach is proposed. An example within the framework of an autonomous simulation and further numerical considerations demonstrate the feasibility of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信