一种新型小型喷气发动机驱动的无人机:建模与控制

E. Altuğ, Abdullah Türkmen
{"title":"一种新型小型喷气发动机驱动的无人机:建模与控制","authors":"E. Altuğ, Abdullah Türkmen","doi":"10.1142/S2301385022500017","DOIUrl":null,"url":null,"abstract":"Significant progress has been made in recent years on personal air vehicles (PAVs), which offer independent and autonomous urban transportation. On-demand parcel delivery drones and heavy-lift drones are gaining serious attention. Although various designs for these systems have been put forward, they still have not reached sufficient maturity. The current systems provide somehow satisfactory operation, but many of these systems are limited in payload capacity and flight duration, and not suitable for future operations. In this paper, we propose a novel thrust system that uses multiple mini jet engines. Unlike electric motors, the jet engine thrust cannot vary rapidly. This led us to design and develop a thrust vectoring system for each jet engine. This proposed system has the potential to enable drones to carry more payload and achieve longer flight times. This paper discusses the design and modeling of the system as well as the stabilization algorithms that satisfactorily stabilize the proposed system. We presented that due to motor lag, thrust variations cannot stabilize the vehicle. We showed that the use of a thrust vectoring mechanism with LQR-based controller can overcome the effects of motor lag and stabilize the vehicle, successfully.","PeriodicalId":164619,"journal":{"name":"Unmanned Syst.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Mini Jet Engine Powered Unmanned Aerial Vehicle: Modeling and Control\",\"authors\":\"E. Altuğ, Abdullah Türkmen\",\"doi\":\"10.1142/S2301385022500017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significant progress has been made in recent years on personal air vehicles (PAVs), which offer independent and autonomous urban transportation. On-demand parcel delivery drones and heavy-lift drones are gaining serious attention. Although various designs for these systems have been put forward, they still have not reached sufficient maturity. The current systems provide somehow satisfactory operation, but many of these systems are limited in payload capacity and flight duration, and not suitable for future operations. In this paper, we propose a novel thrust system that uses multiple mini jet engines. Unlike electric motors, the jet engine thrust cannot vary rapidly. This led us to design and develop a thrust vectoring system for each jet engine. This proposed system has the potential to enable drones to carry more payload and achieve longer flight times. This paper discusses the design and modeling of the system as well as the stabilization algorithms that satisfactorily stabilize the proposed system. We presented that due to motor lag, thrust variations cannot stabilize the vehicle. We showed that the use of a thrust vectoring mechanism with LQR-based controller can overcome the effects of motor lag and stabilize the vehicle, successfully.\",\"PeriodicalId\":164619,\"journal\":{\"name\":\"Unmanned Syst.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Unmanned Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2301385022500017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Unmanned Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2301385022500017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,提供独立自主城市交通工具的个人飞行器(pav)取得了重大进展。按需包裹递送无人机和重型无人机正受到严重关注。虽然对这些系统提出了各种各样的设计,但它们仍然没有达到足够的成熟。目前的系统提供了某种程度上令人满意的操作,但许多这些系统在有效载荷能力和飞行时间方面受到限制,不适合未来的操作。本文提出了一种由多台微型喷气发动机组成的新型推力系统。与电动机不同,喷气发动机的推力不能快速变化。这促使我们为每个喷气发动机设计和开发推力矢量系统。这个拟议的系统有可能使无人机携带更多的有效载荷并实现更长的飞行时间。本文讨论了系统的设计和建模,以及使系统稳定的稳定算法。我们提出,由于运动滞后,推力变化不能稳定车辆。研究表明,采用推力矢量机构和基于lqr的控制器可以成功地克服电机滞后的影响,实现车辆的稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Mini Jet Engine Powered Unmanned Aerial Vehicle: Modeling and Control
Significant progress has been made in recent years on personal air vehicles (PAVs), which offer independent and autonomous urban transportation. On-demand parcel delivery drones and heavy-lift drones are gaining serious attention. Although various designs for these systems have been put forward, they still have not reached sufficient maturity. The current systems provide somehow satisfactory operation, but many of these systems are limited in payload capacity and flight duration, and not suitable for future operations. In this paper, we propose a novel thrust system that uses multiple mini jet engines. Unlike electric motors, the jet engine thrust cannot vary rapidly. This led us to design and develop a thrust vectoring system for each jet engine. This proposed system has the potential to enable drones to carry more payload and achieve longer flight times. This paper discusses the design and modeling of the system as well as the stabilization algorithms that satisfactorily stabilize the proposed system. We presented that due to motor lag, thrust variations cannot stabilize the vehicle. We showed that the use of a thrust vectoring mechanism with LQR-based controller can overcome the effects of motor lag and stabilize the vehicle, successfully.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信